Back to index.

list_constants.m
global constants
 
%% List of Constants for suspension thermal noise & seismic noise
%   defines: frequency
%   variables: mass, length of fiber, diameter of each fiber section
%   conditions: temperature
%   physical constants (g, hbar, etc)
%   silica constants (Y, alpha, etc)
%   interferometer parameters
 
%% define frequency points
% N=100000; fmin = 1; fmax = 100;
% frequency = linspace(fmin,fmax,N);
frequency = logspace(-1,3,10000);
 
%% Variables
 
%%%%%  suspension mass  %%%%%
 
%val=0 is aLIGO
%val=0;
val=1;
 
M4 = 80;                     % mass of mirror
 
if M4 == 40
    total_mass = 124;        % total mass of suspension
%     M1 = 22;                 % for m4=40kg
%     M2 = 22;                 % for m4=40kg
%     M3 = 40;                 % for m4=40kg
    M1 = 38.96;                 % for m4=40kg
    M2 = 26.72;                 % for m4=40kg
    M3 = 18.32;                 % for m4=40kg
elseif M4 == 60
    total_mass = 186;           %total mass of suspension
    M1 = 58.44;                 % for m4=80kg
    M2 = 40.08;                 % for m4=80kg
    M3 = 27.49;                 % for m4=80kg
elseif M4 == 80
    total_mass = 248;           %total mass of suspension
    M1 = 64.7693;                 % for m4=80kg
    M2 = 47.8537;                 % for m4=80kg
    M3 = 55.377;                 % for m4=80kg
% elseif M4 == 80
%     total_mass = 22+22+40+80;           %total mass of suspension
%     M1 = 22;                 % for m4=80kg
%     M2 = 22;                 % for m4=80kg
%     M3 = 40;                 % for m4=80kg
elseif M4 == 100
    total_mass = 310;
    M1 = 97.39;                % for m4=160kg      m1
    M2 = 66.8;                 % for m4=160kg      m2
    M3 = 45.81;                 % for m4=160kg      m3
elseif M4 == 120
    total_mass = 372;           %total mass of suspension
    M1 = 116.87;                 % for m4=80kg
    M2 = 80.15;                 % for m4=80kg
    M3 = 54.97;                 % for m4=80kg
elseif M4 == 140
    total_mass = 390;
    M1 = 112.83;                % for m4=160kg      m1
    M2 = 80.19;                 % for m4=160kg      m2
    M3 = 56.99;                 % for m4=160kg      m3
elseif M4 == 160
    total_mass = 390;
    M1 = 100.21;                % for m4=160kg      m1
    M2 = 74.46;                 % for m4=160kg      m2
    M3 = 55.33;                 % for m4=160kg      m3
elseif M4 == 180
    total_mass = 390;           %total mass of suspension
    M1 = 88.61;                 % for m4=80kg
    M2 = 68.48;                 % for m4=80kg
    M3 = 52.92;                 % for m4=80kg
elseif M4 == 200
    total_mass = 390;
    M1 = 77.83;                % for m4=160kg      m1
    M2 = 62.3;                 % for m4=160kg      m2
    M3 = 49.87;                 % for m4=160kg      m3
end
 
 
 
%%%%%  suspension length  %%%%%
 
 
%% aLIGO values (mass, length)
if val==0
    M4 = 39.6310;                    %mass of mirror
    M1 = 21.9990;                 % for m4=40kg
    M2 = 21.5260;                 % for m4=40k
    M3 = 39.6330;                 % for m4=40kg
% M1=22;
% M2=22;
% M3=40;
% M4=40;
    total_mass = M4+M1+M2+M3;           %total mass of suspension
%     F_l   = 0.5820;                %length of last stage fibre
%     L_1 = 0.4152;                  %length of first stage
%     L_2 = 0.2754;                    %length of second stage
%     L_3 = 0.3287;
 
%     L_1=0.4160 ;
%     L_2=0.2770 ;
%     L_3=0.3410 ;
%     F_l=0.6020 ;
 
    L_1=0.42 ;
    L_2=0.28 ;
    L_3=0.33 ;
    F_l=0.5820 ;
 
    total_length = F_l+L_1+L_2+L_3;        %total l
    %total_length = 2.14;        %total l
    L4_rad1 = 410e-6;      %radius of thick section of fibre (to cancel thermoelastic)
    L4_rad2 = 220e-6;      %radius of thin section of fibre (645MPa)
    %L4_rad2 = 142.19e-6;    %1.85GPa
else
%     total_length = 1.60;        %total l
%     L_1=0.4160 ;
%     L_2=0.2770 ;
%     L_3=0.3410 ;
%     F_l=0.6020 ;
 
    total_length = 2.14;
    F_l   = 0.6;                %length of last stage fibre
    L_1 = (total_length-F_l)./3; %length of first stage
    L_2 = L_1;                    %length of second stage
    L_3 = L_1;                    %length of third stage
end
 
%aLIGO suspension length
% F_l   = 0.602;                %length of last stage fibre
% L_1 = 0.416; %length of first stage
% L_2 = 0.277;                    %length of second stage
% L_3 = 0.341;
% total_length = F_l+L_1+L_2+L_3;        %total l
 
 
 
 
%%%%%  fiber radius (last stage)  %%%%%
 
 
 
if M4 == 40
    L4_rad1 = 410e-6;      %radius of thick section of fibre (to cancel thermoelastic)
    L4_rad2 = 201.08e-6;    %radius of thin section of fibre (770MPa)
    L4_rad2 = 142.19e-6;      %radius of thin section of fibre (1.54GPa)
elseif M4 == 60
    L4_rad1 = 504e-6;       
    L4_rad2 = 247e-6;        %770MPa
    L4_rad2 = 174.14e-6;        %1.54GPa
elseif M4 == 80
    L4_rad1 = 581e-6;       
    L4_rad2 = 285e-6;        %770MPa
    %L4_rad2 = 201.08e-6;        %1.54GPa
elseif M4 == 100
    L4_rad1 = 650e-6;       
    L4_rad2 = 318e-6;        %770MPa
    L4_rad2 = 224.82e-6;        %1.54GPa
elseif M4 == 120
    L4_rad1 = 712e-6;       
    L4_rad2 = 349e-6;        %770MPa
    L4_rad2 = 246.28e-6;        %1.54GPa
elseif M4 == 140
    L4_rad1 = 769e-6;       
    L4_rad2 = 377e-6;        %770MPa
    L4_rad2 = 266.01e-6;        %1.54GPa
elseif M4 == 160
    L4_rad1 = 822e-6;       
    L4_rad2 = 403e-6;        %770MPa
    L4_rad2 = 284.38e-6;        %1.54GPa
elseif M4 == 180
    L4_rad1 = 872e-6;       
    L4_rad2 = 427e-6;        %770MPa
    L4_rad2 = 301.63e-6;        %1.54GPa
elseif M4 == 200
    L4_rad1 = 919e-6;       
    L4_rad2 = 450e-6;        %770MPa
    L4_rad2 = 317.94e-6;        %1.54GPa
end
 
 
 
%%%%%  coating thermal & clipping loss variables  %%%%%
Power = 1000;               % laser power
BeamRad = 0.062;            % beam radius
MirrorRad = 0.17-0.003;          % mirror radius
theta1 = 0.283181419;       % mirror flat edge angle
 
d_SiO2 = 182e-9*17;         % coating thickness SiO2
d_Ta205 = 131e-9*16;        % coating thickness Ta2O5
 
aspect_ratio = 34/20;
specific_weight = 40/(pi*0.34^2/4*0.2); %specific weight
mirror_sigma = 6.2/34;      % w/2a
 
phi1_SiO2 = 4e-5;           % coating loss angle SiO2
phi2_Ta205 = 3.8e-4;        % coating loss angle Ta2O5
Y1_SiO2 = 7.2e10;           % coating Young modulus SiO2 (Pa)
Y2_Ta205 = 1.4e11;          % coating Young modulus Ta2O5 (Pa)
ni1_SiO2 = 0.17;            % coating Poisson ratio SiO2
ni2_Ta205 = 0.23;           % coating Poisson ratio Ta2O5
 
 
 
%% Conditions
 
T_mir = 300;           % temperature
arm_length = 4000;     % aLIGO arm length
 
k1 = 1429.45595883388; % grad_descent_fit_z_bfgs_28July2010_part1     %pend.kcn
k2 = 1648.69334920402; % grad_descent_fit_z_bfgs_28July2010_part1     %pend.kc1
k3 = 2382.96853678021; % grad_descent_fit_z_bfgs_28July2010_part1     %pend.kc2
k4 = 32963.3; % LASTI model fitting result Brett Shapiro (fitting filename: grad_descent_fit_z_bfgs_28July2010_part1)   %pend.kw3
 
%k1~k4 from Dr.Shapiro's codes
% k1=2.8505e3;
% k2=3.2885e3;
% k3=4.7382e3;
% k4=6.5927e4;
 
 
 
%% List of Constants
 
constants.g    = 9.81;                      % local acceleration (ms^-2)
constants.hbar = 1.054572e-34;              % (Plancks constant)/(2*pi [Js]
constants.c    = 2.99792458e8;              % Speed of light in Vacuum [m/s]
constants.kB   = 1.380658e-23;              % Boltzman Constant [J/K]
 
 
%% constants from thermal_noise_test_141208.m file (constants for silica)
constants.Y    = 72e9;                      % Young's modulus
constants.rho  = 2202;                      % density
constants.C    = 740;                       % specific heat
 
constants.kappa= 1.38;                      % thermal conductivity
constants.alpha= 3.9e-7;                    % thermal expansion coefficient silica
constants.beta = 1.52e-4;                   % Young's modulus variation of silica (1/Y dY/dT)
 
/export0/wikidata/pages/igr-public/list_constants.txt · Last modified: 2018/09/26 16:18 by jamie.scott
 
Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Share Alike 3.0 Unported
Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki