Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bilby_one_waveform_test
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Wei Changfeng
bilby_one_waveform_test
Commits
15054bfc
Commit
15054bfc
authored
5 years ago
by
Wei Changfeng
♋
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parents
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Dockerfile
+100
-0
100 additions, 0 deletions
Dockerfile
with
100 additions
and
0 deletions
Dockerfile
0 → 100644
+
100
−
0
View file @
15054bfc
import numpy as np
import bilby
import matplotlib.pyplot as plt
from
gwpy.timeseries import TimeSeries
outdir = 'outdir'
label
= 'bbh_test_onewaveform'
sampling_frequency = 16384.
dt = 1.0/sampling_frequency
#Load data.
data = np.loadtxt('./mdc-master/injection-h_m1_L0.9_l2m2_r300.dat')
N = len(data)
duration = N*dt
time = np.arange(0,duration,dt)
#The strain data Daniel gave me only include one column. This is to add time column to data.
f = open('injection-h_m1_L0.9_l2m2_r300.txt','w')
for i in range(0,N):
f.write("%.20e %.20e\n" % (time[i],data[i]))
f.close()
plt.plot(time,data)
#Translate "txt" file to "gwf" file, because BILBY only reads "gwf" file.
#Read new data which has 2 columns as a timeseries.
gwffile = TimeSeries.read('injection-h_m1_L0.9_l2m2_r300.txt')
gwffile.t0 = .0
#Give channel a name.
gwffile.name='H1:GWOSC-4KHZ_R1_STRAIN'
gwffile.write('injection-h_m1_L0.9_l2m2_r300.gwf')
#This is to check if "gwf" file is succeed to produce.
#data_2=TimeSeries.read('injection-h_m1_L0.9_l2m2_r300.gwf','H1:GWOSC-4KHZ_R1_STRAIN')
# inject the signal into H1 interferometer.
#ifos = bilby.gw.detector.get_empty_interferometer('H1')
ifos = bilby.gw.detector.InterferometerList(['H1'])
ifos[0].set_strain_data_from_frame_file(frame_file='injection-h_m1_L0.9_l2m2_r300.gwf',
sampling_frequency=sampling_frequency, duration=duration,
start_time=.0,channel='H1:GWOSC-4KHZ_R1_STRAIN')
#ifos[0].set_strain_data_from_power_spectral_densities(sampling_frequency=sampling_frequency, duration=duration, start_time=-0.5)
print(ifos[0])
#Usually for 1 event, we have strain data from 2 or more interferometers, so the following code is needed:
#for i in range(len(ifos)):
# ifos[i].set_strain_data_from_frame_file(frame_file='new_injection-h_m16_L0.18_l2m2_r300.gwf',sampling_frequency=sampling_frequency, duration=duration, start_time=.0,channel='')
# ifos[i].strain_data_from_gwpy_time_series('injection-h_m16_L0.18_l2m2_r300.gwf')
# ifos[i].set_strain_data_from_power_spectral_densities(
# sampling_frequency=sampling_frequency, duration=duration,
# start_time=-0.5)
# Generate waveform
waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
reference_frequency=50., minimum_frequency=10.)
waveform_generator = bilby.gw.WaveformGenerator(
duration=duration, sampling_frequency=sampling_frequency,
frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
waveform_arguments=waveform_arguments)
#Use customized BBH priors.
priors = bilby.core.prior.PriorDict(filename='bilby_gw_prior_files_binary_black_holes.prior')
priors['geocent_time'] = bilby.prior.Uniform(
minimum=.0-0.1,
maximum=.0+0.1,
name='geocent_time', latex_label='$t_c$', unit='$s$')
#likelihood
likelihood = bilby.gw.GravitationalWaveTransient(
interferometers=ifos, waveform_generator=waveform_generator, priors=priors,
distance_marginalization=True, phase_marginalization=True, time_marginalization=True)
result = bilby.run_sampler(
likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000,
injection_parameters=None, outdir=outdir, label=label)
# Make a corner plot.
result.plot_corner()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment