diff --git a/whiten_signal.ipynb b/whiten_signal.ipynb deleted file mode 100644 index 256190686fbd1e0c3cb7fceb0c7c1dfec4e11225..0000000000000000000000000000000000000000 --- a/whiten_signal.ipynb +++ /dev/null @@ -1,275 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a notebook to whiten signal genreated from \"h_m16_L0.18_l2m2_r300.dat\"." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "with open('0.json','r') as f1:\n", - " waveform = json.load(f1)\n", - " \n", - " #extract time series at V1,L1,and H1 from waveform file.\n", - " data_V1 = waveform['data']['V1']\n", - " data_L1 = waveform['data']['L1']\n", - " data_H1 = waveform['data']['H1']\n", - " times_V1 = waveform['times']['V1']\n", - " times_L1 = waveform['times']['L1']\n", - " times_H1 = waveform['times']['H1']" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZwcdZ3/8denu+fKXLlvkpBwE8IVAWUVXBBQuRREFHXFBVddZV3g5y66y6q7D1fRFUUXXTzWVVhQEFYODw455AiQcIVwRBIgJCRkkpBrJpmZ7v78/qjqmZq7ejIz3TXzfj4e80h3VXXVZzo99envbe6OiIiMPalSByAiIqWhBCAiMkYpAYiIjFFKACIiY5QSgIjIGKUEICIyRikByKhkZl80sx8P9bExzuVmtk+RrznPzO4ciusPcJ3jzWztcF9HksM0DkDKnZl9HLgEWABsB24BLnP3raWMqzdm5sC+7v5SqWPpzsyOB65199mljkXKg0oAUtbM7BLgG8D/AxqBY4C5wF1mVtnHazIjF6FIcikBSNkyswbgK8Dn3P337t7u7q8A5wDzgI+Ex33ZzG4ys2vNbDvw8XDbtZFzfczMXjWzzWb2z2b2ipmdGHn9teHjeWE1zl+Z2Roz22RmX4qc5ygze8TMtprZejP7fl+JqJff5+NmttrMdpjZy2Z2XmT7g5HjTjKzF81sm5ldbWb3m9kF0WPN7Ftm9mZ4nndHXnu+mT0fXmO1mf3N4N59GQuUAKScvQ2oBm6ObnT3ncBvgXdFNp8B3ASMB66LHm9mBwFXA+cBMwhKErMGuPZfAPsDJwCXm9mB4fYc8PfAZOCt4f7PDPSLmFktcBXwbnevD3+3p3o5bnL4e1wGTAJeDI+NOjrcPhm4AviJmVm4byNwKtAAnA9caWZHDBSfjE2JSwBm9lMz22hmzw7BuQ4Lv82tMLNnzOyDvRxzlZnt3NNryaBMBja5e7aXfevD/QWPuPv/uXve3Xd1O/Zs4DZ3f9Dd24DLgYEav77i7rvc/WngaeBQAHdf5u5L3D0blkb+Czgu5u+TBxaaWY27r3f3Fb0c8x5ghbvfHP7eVwEbuh3zqrv/yN1zwP8QJLVpYXx3uPsqD9wP3Am8PWZ8MsYkLgEAPwNOGaJztQAfc/eDw3N+x8zGF3aa2WJgwhBdS4q3CZjcR53+jHB/wWv9nGdmdL+7twCbB7h29KbbAtQBmNl+Zna7mW0Iq5u+RtdE1Ct3bwY+CHwKWG9md5jZATFidaB7z50Nkf0t4cNCfO82syVmtsXMthIklAHjk7EpcQnA3R8AtkS3mdkCM/u9mS0zsz/18YfV27lWuvufw8evExSfp4TnTAPfBL4wpL+AFOMRoBV4f3SjmdUB7wbuiWzu7xv9eqCj54uZ1RBUrwzGD4AXCHr6NABfBKz/l4QBuv/B3d9FkLxeAH4UI1aLPu+PmVUBvwa+BUxz9/EEVWWx4pOxJ3EJoA/XEDQUHglcSlDfWxQzOwqoBFaFmz4L3Oru64csSimKu28jaAT+npmdYmYVZjYP+BXBt+JfxDzVTcBpZva2sMH2ywz+plhP0BV1Z/hF49NxXmRm08zsjLAtoBXYSVAl1N0dwCFmdmZY8vlbYHrM2CqBKqAJyIaNwyfFfK2MQYlPAOG3wbcBN5rZUwR1sjPCfe83s2d7+flDt3PMILiZnO/ueTObCXwA+N7I/jbSnbtfQfAt+1sEN95HCapITnD31pjnWAF8DriB4Bv2ToLSXqzXd3Mp8GFgB8E3+F/GfF0KuBh4naAEexy9JA9330Tw2buCoJrqIGBpnFjdfQdwEUGCfDOM89aY8ckYlMiBYOG3wNvdfWHYVfBFd58xyHM1APcBX3P3m8Jt7wV+AuwOD5sDrHb3okZ4SnkKvzRsJajGebnU8fTHzFIEpZ3z3P3eUscjo0viSwDuvh142cw+AEGdqZkdGue1YXXALcDPCzf/8Jx3uPt0d5/n7vOAFt38k83MTjOzcWEVzLeA5cArpY2qd2Z2spmND+v0C20MS0ocloxCiUsAZnY9QePg/ma21sz+mqB/91+b2dPACoI+4XGcA7yDYODQU+HPYcMSuJTaGQTVL68D+wLnevkWf99K0Ba1CTgNOLOXrq0ieyyRVUAiIrLnElcCEBGRoZGoSbMmT57s8+bNK3UYIiKJsmzZsk3uPqX79kQlgHnz5rF06dJShyEikihm9mpv21UFJCIyRikBiIiMUUoAIiJjlBKAiMgYpQQgIjJGKQGIiIxRSgAiImOUEoDIKLBu6y7ufXFjqcOQhFECEBkFfv7IK3zuf58sdRiSMEoAIqNAWzZPe663BcZE+qYEIDIK5PNOXjP7SpGUAERGgWzeyev+L0VSAhAZBfKuEoAUTwlAZBTI5R130AJPUgwlAJFRIBvW/6gaSIqhBCAyCuQ7EoAygMSnBCAyCuTC+74SgBRDCUBkFCiUAHT/l2IoAYiMAtl8MAgsp0YAKYISgMgoUBgErCogKYYSgMgoULjxqwAgxVACEBkFsh1tAMoAEp8SgMgoUGgEVhuAFEMJQGQUyGkgmAyCEoDIKJBzVQFJ8ZQAREYBlQBkMJQAREaBQgLIqQQgRVACEBkFOrqBqgggRVACEBkFsjlNBSHFUwIQGQU6B4IpA0h8SgAio4DaAGQwlABERoGcRgLLIJQ8AZhZ2syeNLPbSx2LSFLlNBeQDELJEwDwd8DzpQ5CJMlyWhFMBqGkCcDMZgPvBX5cyjhEkq5jSch8iQORRCl1CeA7wBeAPj+2ZvZJM1tqZkubmppGLjKRBMmqBCCDULIEYGanAhvdfVl/x7n7Ne6+2N0XT5kyZYSiE0kWdQOVwShlCeBY4HQzewW4AfhLM7u2hPGIJJbmApLBKFkCcPfL3H22u88DzgX+6O4fKVU8IkmmKiAZjFK3AYjIEOhsBFYCkPgypQ4AwN3vA+4rcRgiiaVxADIYKgGIjAIaByCDoQQgMgooAchgKAGIJJy7d1T9aCCYFEMJQCThovX+KgFIMZQARBIuG/narwQgxVACEEm4aLWP7v9SDCUAkYSLLgKTUz9QKYISgEjC5XKdN31VAUkxlABEEi5aAlABQIqhBCCScNFqHy0JKcVQAhBJuGgC0KLwUgwlAJGEUxWQDJYSgEjC5VUFJIOkBCCScNEqIPUCkmIoAYgkXDbaBqC5gKQISgAiCZd3lQBkcJQARBJO3UBlsJQARBKuaxtACQORxFECEEm4LuMAlAGkCEoAIgkXHQegKiAphhKASMLlVQUkg6QEIJJwWY0DkEFSAhBJOJUAZLCUAEQSrstcQMoAUgQlAJGEUxWQDJYSgEjCqQpIBksJQCThNBmcDJYSgEjCdUkAKgJIEZQARBJOC8LIYCkBiCScqoBksJQARBIur6kgZJCUAEQSLpvTovAyOEoAIgmXVxuADJISgEjCRZeBVBuAFEMJQCThcvnODKD7vxRDCUAk4bQgjAxWyRKAme1lZvea2XNmtsLM/q5UsYgkWaQNWFVAUpRMCa+dBS5x9yfMrB5YZmZ3uftzJYxJJHEKVUCZlKkKSIpSshKAu6939yfCxzuA54FZpYpHJKkKjcCZtKkEIEUpizYAM5sHHA482su+T5rZUjNb2tTUNNKhiZS9wk2/Ip1SG4AUpeQJwMzqgF8Dn3f37d33u/s17r7Y3RdPmTJl5AMUKXOFm35FOqVxAFKUkiYAM6sguPlf5+43lzIWkaQqLAgTtAEoA0h8pewFZMBPgOfd/dulikMk6fJ5J2WQTqkNQIpTyhLAscBHgb80s6fCn/eUMB6RRMq5k0mlSJl1GRUsMpBY3UDNbDzwMWBe9DXuftFgL+zuDwI22NeLSCCXd1IpMAtmA3V3rrxrJee8ZS9mTxhX6vCkjMUdB/BbYAmwHNB3DJEykss7aTNSFlQBbdrZxlV/fIkJtZWcf+zepQ5PyljcBFDt7hcPayQiMii5vJNOWdgG0NkrqDWr72rSv7htAL8wswvNbIaZTSz8DGtkIhJLIQGYBe0B2XBkcGu7EoD0L24JoA34JvAloNDNwIH5wxGUiMSX8yABpCzoBlqYHHR3NlfawKTsxU0AlwD7uPum4QxGRIqXzxcSAOTzqAQgscWtAnoJaBnOQERkcLo3Ane2AagEIP2LWwJoBp4ys3uB1sLGPekGKiJDI+gGWkgAnesC71YJQAYQNwH8X/gjImWmow0gFUwMV1gkXiUAGciACcDM0sBJ7n7eCMQjIkXK5TsbgbtWAakEIP0bsA3A3XPAXDOrHIF4RKRIhTYAC6uACpPD7W5XCUD6F7cKaDXwkJndStAeAIAmcRMpvY6BYOFUEIUJ4VQCkIHETQCrwp8UUD984YhIsfKRcQC5fKQNQCUAGUCsBODuX4GOxVtw953DGZSIxKc2ABmsWOMAzGyhmT0JrABWmNkyMzt4eEMTkTiyeSdlwVQQ0W6gSgAykLgDwa4BLnb3ue4+l2Bk8I+GLywRiatQBZQOVwTLhSOB1QgsA4mbAGrd/d7CE3e/D6gdlohEpCjRKqAubQAqAcgAYvcCMrN/Bn4RPv8IQc8gESmxXD5YEaxQBdTRC0glABlA3BLAJ4ApwM0Ei7hPDreJSIlFSwDu3jkOQCUAGUC/JQAz+4W7fxT4mOb9ESlPOafXBWGC6qA8mXQpl/6WcjbQJ+NIM5sJfMLMJkQXg9GCMCLlIZfPd0wHHW0DALUDSP8GagP4IXAPwcIvT3TbpwVhRMpALk+kG6h3dAOFoCdQbVXcpj4Za/otAbj7Ve5+IPBTd9+7249u/iJlIJ93MmEJwCNVQKASgPQvVuWgu3/azP7CzM4HMLPJZrb38IYmInHkPLoofGcjMGgsgPQv7kjgfwH+Abgs3FQJXDtcQYlIfIUFYcyMnDt5lQAkprjdA94HnE44E6i7v44mhRMpC8F00ITdQOlSAlACkP7ETQBt7u4EDb+YmUYBi5SJYBxAKlgUPjIVBKgKSPoXNwH8ysz+CxhvZhcCd6O5gETKQpAAIN0xG2jnPpUApD9xp4P+lpm9C9gO7A9c7u53DWtkIhJLoRE4l4d8ni4lAE0HIf2J2wh8MfCcu/8/d79UN3+RgUUbY69/bA3XP7YGgD/9uYmTr3yAFzfsAGD9tl1sa2nfo+sUBoL16AWkEoD0I+4IkXrgTjPbAvwSuNHd3xi+sESSp2lHKy1tWeZOquV3y9dz6Y1P86njFjBrQg2X3bwcgI3bW/nvh19ma0s7l938DN84axHvu/phDt2rkesuOGZQ182GawJ3XxAGVAKQ/hWzIthXzGwR8EHgfjNb6+4nDmt0ImWspS3LLU+u45BZjaTMOP9nj7OluY3TFs3gjuXrqa+u4D/uWgnAMfMnUpVJc+XdK6mvznDRCfty1T1/5v1XP8zO1iwPvbSZ1U07mT+lrug48mE30FS3uYBAbQDSv2LHiG8ENgCbgalDH45I+dndnqMynaItl+cH963iufXbece+k/nFkldZ+UawOmpF2phSV8VZR8zixmVrOXhmA9ddcAw3Ln2N+1c2cdW5h1OZSfGV21ZwxmGzeNuCSTy6ejPLXn2Tq887gouuf5LrH1vDxe/an9WbdnLwzMbY8eW8UAIIkkFOA8EkplgJwMw+A5xDMCX0jcCF7v7ccAYmUgq5vPPQS5t4YcN25kys5aGXNnHD42uoqUgzrjLDhu27mVpfxV3PvcHE2kr+66NH8urmZp5cs5XLTzuIGY01fPr4fZjWUMW4ygwXvH0+F7y9c9aUK84+tOPxj/9qMRu27WbfafXc/szr3LhsLQ+s3MTKjTu45+LjYpcGcnknnTZS2c6RwBVpoz3nKgFIv+KWAPYCPu/uTw1nMCLDyd3Z0Zpl4/bdvLG9lTfCf5ev28rDqzaTywVVKdt2dTbIZlLGWUfMJpWCdVt38x/nHMrbFkzixTd2MK2+mgm1lT2us/fkeMNk6qsrqK+uAODDR83lt8s3kM057vD4K1uKSwCFEkBYBVRdkSabz9LanmNLcxvbd7UzL2ZcMnbEbQO4DMDMpgLVke1rhikukaI0t2Y7bugbd+xmY+EGvyP4t3DT39VLlciMxmredeA06qoztLTmOG7/KRwzfxJrtrQwraGKGY01PV5zwPSGIY3/2H0m8d1zD2PxvImcetWfWPrKm3zwLXNivbbQDTSV6mwErkinqMqkaM3mueL3L/D7FRtYctkJVFekhzRuSba4VUCnAd8GZhK0A8wFngcOHr7QZKzL552tu9rZ0tzKpp1tbNzRGt7Id7Ox48Ye/Nvc1vPGXlORZmpDFdMaqjlk9nhOrA8eF7ZNa6hman1Vn9MlT+zl2/1wMTPOOGwWAEfOncCyNW/Gel0+H5QYOlcEC3sFpYyqTJrWbJ61b+5ia0s7f1ixoeMa7kH1kBLC2Ba3CujfgGOAu939cDN7J8G6wHvEzE4BvgukgR+7+9f39JxSntydXe05tu1qZ/uuLFtb2tjS3Mbm5jY272wLbvLNbWzZ2cbm5la2NAf7I+2ZHaorUh037wNnNnD8/lOZ1lAV3Njrq5ka3uTrqzKY2cj/snvoiLkTuPv5jWxpbhswCRXm/i9UAeXywWRwaTOqK1Lsbs/RtKMVCMYiFBLAtY+u4YrfvcD9X3gndVUZTv7OA3zsrXM5/9i9eXlTM0+8+iZnHTkbgLZsnsqMVhUbjeImgHZ332xmKTNLufu9ZvadPbmwmaWB/wTeBawFHjezW9W4XH7asnl2teVobsvS0paluTV8XPi3LUdza5Ztu9p7/dke3vTbcn03SDZUZ5hcV8XE2kr2nlzLkXMnMrmukom1lUyqq2JSbSVT66uY2lBNQ3Uyb+xxLZ4bLLb3xKtvcuJB0/o9ttDjJ5XqHAdQKAGkU0EVUNPOViozKZas3sLLm5qZM3EcP3pgNTtas9yxfD3T6qt4eVMz//3QK/zVW+fx1dtWcO+LTew/vZ7x4yo49XsP8tl37sMFb5/PLU+u5YlXt/Ll0w8mm89z7ZI1nLpoBtMaqnltSwstbTn2nx7ME7lu6y5mNlYHs5TmHQvjlPIRNwFsNbM64E/AdWa2kXBm0D1wFPCSu68GMLMbgDOAIU8A9zz/Bk+9thUIFswocDqfeLdvmtGnfb2mj4d4t5N5n8fFi6XruSLHFXkuB3I5py2Xpy2bpzWbDx/naM85bdlge1suT2t7jua2HC1tWdpz/QQUYQYN1RU01nT+zGysoaGm67bCz8TaSibXVTKhtpIKrVvbYdHsRjIpY9magRNAvlACCNsAggVh8mTSRmU6xc7WLFua2/jQUXP41dLXuPrelzhl4XTWbGmhMpPiN0+uY2pDFQBrtrRw07K13LeyCYAf3L+Kmoo0W1va+Y87V3LQzAb+8dfLac3mmTm+hjVbmrn+sde4celr/NuZC7ng50tpac3xnXMPY8nqzfz8kVc57dCZnLN4Nv/8f88CcNl7DmTpK1v4w4o3eO+iGRw0o4FfLX2Nmoo07zlkBi9s2MGLG7Zz5NwJNI6r5OnXtlJbmWb+lDo2N7extaWNCeMqqUgbzW058u7BamgEn7/C49HofUfMjt3BIK6BFoX/PPAwcCbQAnweOA9oBL66h9eeBbwWeb4WOLqXGD4JfBJgzpx4jWLd3b+yiWuXvBo9Z+fjLtfqdu3o3t4fdnlN9Pie54q+pvfr932NriezGMf1FWM6ZVRmUlSmU1Rm0uHjoLqgoToTPM+kqcqkqK1MM64qE/xbmaG2qtu/lRnGVaU7/q2rzOgb3hCorkhz8KxGHvzzJi49Kfg235fCtA+ZblNBBFVAada9uQuAhbMaaKyZzw/vX8U9L2xkan0V5x09lyvvXklF2jj3LXtx+zPr+affPEvajDMOn8UtT64F4L2LZnDXc2/w0Z88Rm1lmrcumMQVf3gBdzj54Gnc8/xGzv7hI0xrqGLuxHF85rpg9djj95/CHc+8zm1Pv87sCTVkUsbf/GIZZnDknAn88P5VuMOs8TW05fLc+dwbZFLGnEnjuPfFIAlNqq1kd/hlJGVBz6ntu9txD3/nlIEHv7fTmRBHoyPmThjZBADMBr4DHAAsBx4iSAi3ufuWIY2kD+5+DXANwOLFiwf1v/vVMxby1TMWDmlcIsPpg4v34ou3LOcLNz3DN89e1GdiLcw3lAqngsi5k/dCI3CKlW8E8w1NqaviQ2+Zw8Ydu7n5iXX8/Yn78f4jZnHl3StpzzkfOir4cnXD469x2qEz+Yd3789tz7xOZTrFv56xkPmTa/neH1/in049iJMPms5p33+QfafWcfV5R3Lb06/z04de5soPHsb0hmr+9fbnOHLuBD6weC8eXb2Zh1dt5sJ3zCeTMn737HoOmN7AgTMaWNW0k/Vbd/PWBZNwd55Zt435k2sZP66SzTtbaWnLMXtCDe7QtLOVCeMqqcykyOby5NypyqgBe0/1mwDc/VIAM6sEFgNvA84HrjGzre5+0B5cex3B+IKC2eE2kTHvw0fPoWlHK1fevZIDptdz4Tt6X4K70AaQDlcEc4f2XJgAKlJs350FYEp9FamU8Y2zFnH8/lM56aBpVFekOWrviWxpbmPR7EbSqbnc/sx6Lnz73kytr+Zr7zuEcZVpJtZW8vkT9+PEA6exaHYjZsbdFx9HRTq45pmHz+LMw2d1xPT1sxZ1PD56/iSOnj+p4/n7Dp/d8XjBlDoWdIx1MI6YM6Fj36S6KgqvMoNpDR29z8mkU0VPYSC9i/s+1gANBFU/jcDrBCWCPfE4sG+4tvA64Fzgw3t4TpFR46IT9uGWJ9d2tF/1JhdpA0iHdX3ZXJ50yqiOfEOeUh/U81ekU5x+6MyO7T8474iggdaMhbMaefYrJ3fsO/vIzpt1OmUcutf4jufqFTQ6DNQGcA1BX/8dwKME1T/fdvd4nZT74e5ZM/ss8AeCbqA/dfcVe3pekdHCzJg5vob123b1eUy0BFCoJcrmnUxYAiiYXFfV6+sn9bFdxoaBSgBzgCrgzwTf0tcCfX8dKZK7/xb47VCdT2S0md5YzZJVm/vc35EAzDraCVqz+Y6BYAD11RkN+JJeDdQGcIoFXUsOJqj/vwRYGK4L8Ii7/8sIxCgyZs1orOaNHa3hso89G4ILi38FbQDB4/Zcnkwq6NkFndU/It0NWJHngWcJvqn/jqAn0ALg74Y5NpExb3pjDbm8s2lna6/7s2EG6NoG4F1KAFNUzSN96DcBmNlFZnaDma0B7gdOBV4A3g9MHIH4RMa0mY1B75f123b3ur/Q770wEhgKJYBgMjhQCUD6NlAbwDyC+f//3t3XD384IhI1PUwAG7btgkgvnILC7Bpp66wCaiu0AYT1/koA0peB2gAuHqlARKSnwlTUfZUAuvYCCjJAWy7fMRAMlACkb+rMK1LGJoyroDKTYkOMBFBoJO5sAwj+vPvqAiqiBCBSxsyMGY3VfZcAOgaC0TEOoLMXkKqApH9KACJlbnpDdYwSQKpjMsC2XJ5UtApIJQDpgxKASJmb0VjN+u29jwbuMhCsSy8g49h9JvOho+aw37T6EYtVkkUJQKTMTW+s4Y1trR0zf0Z1LggTVANB52RwM8fX8O/vP0Tz9kif9MkQKXMzGqtpy+XZ0tLWY18+siRkoQooF64HIDIQJQCRMtc5FqBnO0C2l26gAJm0EoAMTAlApMzNDMcCrH2zZztAWzYYCVaVSZPqtvKbyECUAETK3JxJ4wB4dXPPZbg7EkBFqksJQFVAEocSgEiZa6ypYFJtJS9v6pkAWrM5AKoyqS7LRqZT+tOWgelTIpIAe0+uZXWvCSAoAVRmUl2qgNQGIHEoAYgkwN6Ta3mllwTQtQ0gWgJQApCBKQGIJMDeU2rZuKOVna3ZLtu7VAFFG4HVBiAxKAGIJMD8ybUAPUoBre3RKiCVAKQ4SgAiCbD35DqAHu0Ardk8KYNM93EASgASgxKASALMnTQOM3i5qWsCaMvlqcqkMTOiHX9SSgASgxKASAJUV6SZ2VjDy5t2dtne2p7rmOvHVAKQIikBiCTE/Cm1PcYCtGbzHdM+p9UGIEVSAhBJiMJYAPfOWUHbsnmqKoI/YzUCS7GUAEQSYvaEGnbsznbpChqUAIKVv7oMBFMCkBiUAEQSoq6qAoDm1lzHttZsjsp0zzYATQUhcehTIpIQtVXBN/0eJYCwCiha7aMSgMShBCCSEHVVGQCae1QBFdoAOo9VN1CJQwlAJCFq+0gAlWEbgLqBSrGUAEQSolAC6FIF1J7rtQSgXkAShxKASELU9pIAgpHAPdsAlAAkDiUAkYQoNAJ3qQJqj3YDVQKQ4igBiCREZxVQtBtoPjIVROexagOQOJQARBKipiJY+D1aAmjLRtsAOm/66gUkcSgBiCSEmVFbldE4ABkySgAiCVJXlekoAbh7kADS6gUkg1OSBGBm3zSzF8zsGTO7xczGlyIOkaSprcrQ3BYkgPZcMClcVUXPcQBaElLiKFUJ4C5gobsvAlYCl5UoDpFECaqAgkbg6HrA0LUNIJNWApCBlSQBuPud7l6oyFwCzC5FHCJJU1eV7qgCas12rgcM3dcDUO2uDKwcPiWfAH7X104z+6SZLTWzpU1NTSMYlkj5qa3MsHN31wRQpW6gMkiZ4Tqxmd0NTO9l15fc/TfhMV8CssB1fZ3H3a8BrgFYvHix93WcyFhQF+kF1NaRAMKBYJGbfkptABLDsCUAdz+xv/1m9nHgVOAEjy5xJCJ9ijYC92wD6DxObQASx7AlgP6Y2SnAF4Dj3L2lFDGIJFFtpBtoa3t/bQBKADKwUrUBfB+oB+4ys6fM7IclikMkUeqrM7TnnNZsjrZc1yogdQOVYpWkBODu+5TiuiJJV1tZmBAu11EC6FwUvvM4lQAkjnLoBSQiMUUXhSm0AVSmNQ5ABkcJQCRBoovCdHQDLZQAUqoCkuIoAYgkSLQE0KMbqKqApEhKACIJUtulBBBWAfU2FYRGAksM+pSIJEivVUC9rgcw8rFJ8uhjIpIg0WUh27ongMhfs0oAEoc+JSIJEl0WsrVHG4AGgklxSjIOQEQGJ9oInA0HglWEXT67tgEoAcjAlABEEqQinaIqkwqmg7Cg+qcwAjh6zzwetZoAAAgYSURBVNeawBKHEoBIwhRmBC0kgwIzw0xjACQ+tQGIJExhQrjWbJ7KsP6/IGWm+n+JTSUAkYQpLAuZSlmXEgAE1UBKABKXSgAiCVNXlWZnaztt2XzHNBAFphKAFEEJQCRhptZXs2Hbblqz+Y4uoAVpM/UAktiUAEQSZsGUWtZsaWHH7vaOaSAKVAUkxVACEEmYBVPryDu8uGFHL20AqgKS+JQARBJmwZQ6AN5sae+RAMw0DYTEp0+KSMLMn1Lb8bhHCSBlmghOYtNHRSRhxlVmmDW+BqCPRmD9WUs8+qSIJNCCqUE1UM8qILUBSHxKACIJtE/YDtBbLyB1A5W4lABEEmjB1KAdoLdeQCnNBSQxKQGIJFChJ1BVRbc2gJSRSSsBSDxKACIJtE/YBlCZ7tkNVG0AEpcSgEgCTaqt5LPv3IdTFk7vsj1lpumgJTbNBiqSQGbGpSfv32O7poKQYqgEIDKKpNQGIEVQAhAZRdQLSIqhBCAyimgcgBRDCUBkFAlmA9WftcSjRmCRUeQz79yH8TUVpQ5DEkIJQGQUOf3QmaUOQRJEZUURkTFKCUBEZIxSAhARGaOUAERExqiSJgAzu8TM3MwmlzIOEZGxqGQJwMz2Ak4C1pQqBhGRsayUJYArgS8AXsIYRETGrJIkADM7A1jn7k/HOPaTZrbUzJY2NTWNQHQiImODuQ/PF3AzuxuY3suuLwFfBE5y921m9gqw2N03xThnE/DqIEOaDAx4jTKieIeX4h1eind4FRvvXHef0n3jsCWAvpjZIcA9QEu4aTbwOnCUu28YxusudffFw3X+oaZ4h5fiHV6Kd3gNVbwjPhWEuy8HphaeF1MCEBGRoaNxACIiY1TJJ4Nz93kjdKlrRug6Q0XxDi/FO7wU7/AaknhHvA1ARETKg6qARETGKCUAEZExatQlADM7xcxeNLOXzOwfe9lfZWa/DPc/ambzRj7KLvEMFO87zOwJM8ua2dmliLFbPAPFe7GZPWdmz5jZPWY2txRxRuIZKN5PmdlyM3vKzB40s4NKEWcknn7jjRx3VjiPVkm7LsZ4fz9uZk3h+/uUmV1Qijgj8Qz4/prZOeFneIWZ/e9Ix9gtloHe3ysj7+1KM9ta1AXcfdT8AGlgFTAfqASeBg7qdsxngB+Gj88Fflnm8c4DFgE/B85OwPv7TmBc+PjTCXh/GyKPTwd+X87xhsfVAw8ASwi6UJdtvMDHge+XKsZBxLsv8CQwIXw+tZzj7Xb854CfFnON0VYCOAp4yd1Xu3sbcANwRrdjzgD+J3x8E3CCmdkIxhg1YLzu/oq7PwPkSxFgN3HivdfdC4P8lhAM9CuVOPFujzytpbRzU8X5/AL8K/ANYPdIBteLuPGWizjxXgj8p7u/CeDuG0c4xqhi398PAdcXc4HRlgBmAa9Fnq8Nt/V6jLtngW3ApBGJrqc48ZaTYuP9a+B3wxpR/2LFa2Z/a2argCuAi0Yott4MGK+ZHQHs5e53jGRgfYj7eTgrrBK8KZwFuFTixLsfsJ+ZPWRmS8zslBGLrqfYf29hVevewB+LucBoSwBSJszsI8Bi4JuljmUg7v6f7r4A+Afgn0odT1/MLAV8G7ik1LEU4TZgnrsvAu6is/RdrjIE1UDHE3yj/pGZjS9pRPGcC9zk7rliXjTaEsA6IPoNY3a4rddjzCwDNAKbRyS6nuLEW05ixWtmJxJM+ne6u7eOUGy9Kfb9vQE4c1gj6t9A8dYDC4H7wilUjgFuLWFD8IDvr7tvjnwGfgwcOUKx9SbO52EtcKu7t7v7y8BKgoRQCsV8fs+lyOofYNQ1AmeA1QRFoUKjycHdjvlbujYC/6qc440c+zNK3wgc5/09nKDhat+EfB72jTw+DVhazvF2O/4+StsIHOf9nRF5/D5gSZnHewrwP+HjyQRVMJPKNd7wuAOAVwgH9hZ1jVL9Zwzjm/Yegqy9CvhSuO2rBN9GAaqBG4GXgMeA+WUe71sIvpU0E5RUVpR5vHcDbwBPhT+3lnm83wVWhLHe298Ntxzi7XZsSRNAzPf338P39+nw/T2gzOM1gmq254DlwLnlHG/4/MvA1wdzfk0FISIyRo22NgAREYlJCUBEZIxSAhARGaOUAERExiglABGRMUoJQMYsM5sUmUlxg5mtizx/eAivc6aZXd7P/kPM7GdDdT2RuNQNVAQwsy8DO939W8Nw7ocJ+m1v6ueYu4FPuPuaob6+SF9UAhDphZntDP893szuN7PfmNlqM/u6mZ1nZo+F6wgsCI+bYma/NrPHw59jw+37Aa2Fm7+ZfcDMnjWzp83sgcglbyMYmS4yYpQARAZ2KPAp4EDgo8B+7n4Uwdw2nwuP+S5wpbu/BTgr3AdwLPBE5FyXAye7+6EE6w8ULAXePmy/gUgvMqUOQCQBHnf39QDhtNF3htuXEyyAA3AicFBkaYkGM6sDZgBNkXM9BPzMzH4F3BzZvhGYOTzhi/ROCUBkYNEZTfOR53k6/4ZSwDHu3mWRFjPbRTDjLADu/ikzOxp4L7DMzI50980Ec1TtGqb4RXqlKiCRoXEnndVBmNlh4cPngX0i2xe4+6PufjlByaAw3e9+wLMjFKsIoAQgMlQuAhaHK189R9BmAMHavYdHlh39Zth4/CzwMMEsmRBUJZXDKl8yhqgbqMgwM7PvAre5+9197K8C7gf+woNlSkVGhEoAIsPva8C4fvbPAf5RN38ZaSoBiIiMUSoBiIiMUUoAIiJjlBKAiMgYpQQgIjJGKQGIiIxR/x8v/+oIbQFBPQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "# Plot the waveform of L1.\n", - "plt.title('Original signal')\n", - "plt.xlabel('Time(s)')\n", - "plt.ylabel('Waveform')\n", - "plt.plot(times_L1,data_L1)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "# Load ASD file of L1.\n", - "filename = './bilby_gw_detector_noise_curves_aLIGO_ZERO_DET_high_P_asd.txt'\n", - "freq = []\n", - "asd = []\n", - "with open(filename, 'r') as f1:\n", - " while True:\n", - " lines = f1.readline() \n", - " if not lines:\n", - " break\n", - " pass\n", - " freq_tmp, asd_tmp = [float(i) for i in lines.split()] \n", - " freq.append(freq_tmp) \n", - " asd.append(asd_tmp)\n", - " pass\n", - " \n", - " # Transfer data format from list to array.\n", - " freq = np.array(freq) \n", - " asd = np.array(asd)\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def whiten_signal(signal, asd):\n", - " \n", - " signal_rfft = np.fft.rfft(signal)\n", - " whitened_signal_rfft = signal_rfft / asd\n", - " whitened_signal = np.fft.irfft(whitened_signal_rfft, n=Nt)\n", - " return whitened_signal" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEQCAYAAABIqvhxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hV1Z3/8fc3CYoiRIottaAGi9pyyQDGCyNaBG2xGkUrFZTRigMyDl5nWrXaame02Op4oV6QCkWrIooaQW29kh9gcQCBAcEbBdSgLRUrGsFCku/vj3MST07ONTk755LP63nycPbat3U2mg9rr7XXNndHREQkHUXZroCIiOQfhYeIiKRN4SEiImlTeIiISNoUHiIikjaFh4iIpE3hISIiaVN4iIhI2nI+PMzsYDObaWbzIsr6mdmjZnaPmZ2ZzfqJiHREgYaHmc0ys61m9npU+Sgze8vMNpjZVYmO4e4b3f2CqOKTgN+4+78B52a42iIikoQFOT2JmR0H1AIPuPuAcFkx8DZwIlADLAfGAcXA1KhDTHD3reH95rn7meHPXwOuA3YA/+zuxwT2JUREpIWSIA/u7ovMrCyq+Ehgg7tvBDCzR4DT3H0qcEqKx90K/Hs4iJ7IXI1FRCQVgYZHHL2A9yOWa4Cj4m1sZj2AG4HBZna1u08NB9JPgS7AzXH2mwRMAthrr70OP+CAAzJSeRGR1mpoaKCoKOe7mpu8/fbbH7n7V2Oty0Z4pMXdtwGTo8o2Ew6GBPvNAGYAVFRU+IoVK4KqoohISqqrqxk+fHi2q5EyM3s33rpsROAWILIZ0DtclnFmVmlmM7Zv3x7E4UVEOqxshMdy4BAz62NmewBjgflBnMjdF7j7pNLS0iAOLyLSYQU9VHcOsBQ4zMxqzOwCd68DpgDPAW8Aj7r7uoDOr5aHiEgAgh5tNS5O+bPAs0GeO3yeBcCCioqKiUGfS9rf7t27qamp4Ysvvsh2VTq8zp0707t3bzp16pTtqkg7yfkO87Yws0qgsm/fvtmuigSgpqaGrl27UlZWhplluzodlruzbds2ampq6NOnT7arI+0kf8aMtYL6PArbF198QY8ePRQcWWZm9OjRQy3ADqagw0MKn4IjN+jvoeMp6PBQh7kEbZ999mlRtmjRIoYMGUJJSQnz5s2LsdeXqqqqMDPefPPNprKGhgYuueQSBgwYwMCBAzniiCPYtGkTAGVlZQwcOJCBAwfSr18/rr32Wv2LX7KioMNDt60kUtWqLRxz08v0ueoZjrnpZapWBfJ4EQceeCCzZ8/m7LPPTrrtnDlzGDZsGHPmzGkqmzt3Lh988AFr1qxh7dq1PPnkk+y7775N6xcuXMjatWtZtmwZGzdu5MILLwzke4gkUtAd5iKNqlZt4eon1rJzdz0AWz7ZydVPrAVg9OBeGT1XWVkZQNJpKGpra1myZAkLFy6ksrKSX/ziFwB8+OGH7L///k379+7dO+b+++yzD9OnT+eAAw7g448/5itf+UrmvoRIEgoPKQi/WLCO9R98Gnf9qvc+YVd9Q7Oynbvr+cm8NcxZ9l7Mffp9oxvXVfbPaD0jPfXUU4waNYpDDz2UHj168Nprr3H44Yfzwx/+kGHDhrF48WJGjhzJ+PHjGTx4cMxjdOvWjT59+vDOO+9w1FFxp4gTybiCvm2lPg9pFB0cycrbw5w5cxg7diwAY8eObbp11bt3b9566y2mTp1KUVERI0eO5KWXXop7nCBfqyAST0G3PPSQYMeRrIVwzE0vs+WTnS3Ke+27F3MvHBpUteL6+OOPefnll1m7di1mRn19PWbGzTffjJmx5557ctJJJ3HSSSfRs2dPqqqqGDlyZIvjfPbZZ2zevJlDDz203b+DdGwF3fIQafTj7x3GXp2Km5Xt1amYH3/vsKzUZ968efzLv/wL7777Lps3b+b999+nT58+LF68mJUrV/LBBx8AoZFXa9as4aCDDmpxjNraWi666CJGjx5N9+7d2/srSAen8JAOYfTgXkw9YyC99t0LI9TimHrGwDZ3lu/YsYPevXs3/dx6660sX76c3r1789hjj3HhhRfSv3/LVtGcOXM4/fTTm5X94Ac/YM6cOWzdupXKykoGDBhAeXk5JSUlTJkypWm7448/ngEDBnDkkUdy4IEHcu+997bpO4i0RqCvoc22iOlJJr7zzjvZro5k2BtvvMG3v/3tbFdDwvT3kVwevs/jNXeviLWuoFsees5DRCQYBR0eIiISDIWHiIikTeEhIiJpK+jw0EOCIiLBKOjwUIe5iEgwCjo8RIIWa0r2aLfffjs7duwIvC6zZ89u9jxILNXV1fzpT39qWp4+fToPPPBA0FWTAqTwkI5hye2waVHzsk2LQuUBa0141NfXB1KX6PCYPHky5557biDnksKm8JCOodcQeOxHXwbIpkWh5V5DMnL4xoe/zjzzTL71rW9xzjnn4O5MmzaNDz74gOOPP57jjz8egOeff56hQ4cyZMgQxowZQ21tLRCayv3KK69kyJAhPPbYYwwfPpxLL72UQYMGMWDAAJYtWwaE5sUaPXo05eXlHH300axZs6ZFfRYsWMBRRx3F4MGDOeGEE/jrX//K5s2bmT59OrfddhuDBg1i8eLFXH/99dxyyy0ArF69mqOPPpry8nJOP/10/v73vwMwfPhwrrzySo488kgOPfRQFi9enJFrJvlN4SEdQ5/jYMzsUGC8fGPozzGzQ+UZsmrVKm6//XbWr1/Pxo0beeWVV7jkkkv4xje+wcKFC1m4cCEfffQRN9xwAy+++CIrV66koqKCW2+9tekYPXr0YOXKlU2z7e7YsYPVq1dz9913M2HCBACuu+46Bg8ezJo1a/jlL38Zs+UwbNgwXn31VVatWsXYsWP59a9/TVlZGZMnT+byyy9n9erVHHvssc32Offcc/nVr37FmjVrGDhwYNP7RQDq6upYtmwZt99+e7Ny6bgKelZdkWb6HAcVF8CiX8NxP8locAAceeSRTS9uGjRoEJs3b2bYsGHNtnn11VdZv349xxxzDAC7du1i6NAvZ/U966yzmm0/btw4AI477jg+/fRTPvnkE5YsWcLjjz8OwIgRI9i2bRufftr8XSY1NTWcddZZfPjhh+zatYs+ffokrPv27dv55JNP+M53vgPAeeedx5gxY5rWn3HGGQAcfvjhbN68OaXrIYVNLQ/pODYtghUzQ8GxYmbLPpA22nPPPZs+FxcXU1dX12Ibd+fEE09k9erVrF69mvXr1zNz5sym9V26dGm2vZklXI7n4osvZsqUKaxdu5Z77723ze85b/xu8b6XdDwFHR56zkOaNPZxjJkNI6758hZWhgMklq5du/LZZ58BcPTRR/PKK6+wYcMGAD7//HPefvvtuPvOnTsXgCVLllBaWkppaSnHHnssDz30EBDqa9lvv/3o1q1bs/22b99Or16hGYPvv//+mHWJVFpaSvfu3Zv6M37/+983tUJEYino21Z6GZQ02bKyeR9HYx/IlpUZv30VbdKkSYwaNaqp72P27NmMGzeOf/zjHwDccMMNcV/m1LlzZwYPHszu3buZNWsWANdffz0TJkygvLycvffeu1k4NLr++usZM2YM3bt3Z8SIEWzatAmAyspKzjzzTJ566il+85vfNNvn/vvvZ/LkyezYsYODDz6Y3/3ud5m8DFJgCnpK9kYVFRW+YsWKbFdDMqzQpwAfPnw4t9xyCxUVMWfEzjmF/veRCZqSXUREOrSCvm0lks+qq6uzXQWRuNTyEBGRtCk8JK91hD67fKC/h45H4SF5q3Pnzmzbtk2/uLLM3dm2bRudO3fOdlWkHanPQ/JW7969qamp4W9/+1u2q9Lhde7cuenpeukYcj48zGw0cDLQDZjp7s+bWRfgbmAXUO3uD2WzjpIdnTp1SjrthogEI9DbVmY2y8y2mtnrUeWjzOwtM9tgZlclOoa7V7n7RGAy0DjxzxnAvHD5qYFUXkRE4gq65TEbuBNoetuMmRUDdwEnAjXAcjObDxQDU6P2n+DuW8Ofrw3vB9AbWBv+HMyLD0REJK5Aw8PdF5lZWVTxkcAGd98IYGaPAKe5+1TglOhjWGgmuJuAP7j7ynBxDaEAWY06/UVE2l02+jx6Ae9HLNcARyXY/mLgBKDUzPq6+3TgCeBOMzsZWBBrJzObBEwC6Nmzpx64EpGsq62tLZjfRTnfYe7u04BpUWWfA+cn2W8GMANCc1vl03wyIlKY8m1uq0SycctnC3BAxHLvcFnGaUp2EZFgZCM8lgOHmFkfM9sDGAvMD+JE7r7A3SeVlpYGcXgRkQ4r6KG6c4ClwGFmVmNmF7h7HTAFeA54A3jU3dcFdH61PEREAhD0aKtxccqfBZ4N8tzh8+hlUCIiAdAwVxERSVtBh4duW4mIBKOgw0Md5iIiwSjo8BARkWAUdHjotpWISDAKOjx020pEJBgFHR4iIhKMgg4P3bYSEQlGQYeHbluJiASjoMNDRESCofAQEZG0FXR4qM9DRCQYBR0e6vMQEQlGQYeHiIgEQ+EhIiJpU3iIiEjaFB4iIpK2gg4PjbYSEQlGQYeHRluJiAQjpXeYm1kFcCzwDWAn8Drwgrv/PcC6iYhIjkrY8jCz881sJXA1sBfwFrAVGAa8aGb3m9mBwVdTRERySbKWx97AMe6+M9ZKMxsEHAK8l+mKiYhI7koYHu5+F4CZHeDu70euM7Ovu/vqICsnIiK5KdUO801mNsfM9o4oezaIComISO5LNTzWAouBJWb2zXCZBVOlzNFQXRGRYKQaHu7udwMXAwvMrBLw4KqVGRqqKyISjJSG6hJuZbj7K2Y2EngU+FZgtRIRkZyWanh8v/GDu39oZscD/xxMlUREJNclDA8zuyLic6xNFmW6QiIikvuS9Xl0jfj5z6jlrsFWTUREclWy5zx+0fjZzEZHLouISMeVzsSIOT+6SkRE2kdBz6orIiLBSNZhvpZQi8OAb5rZmsZVhJ79KA+4fiIikoOSDdU9pV1qkYCZjQZOBroBM939eTM7GLgGKHX3M7NaQRGRDijhbSt3f9fd3wUuavwcWZbs4GY2y8y2mtnrUeWjzOwtM9tgZlclqUOVu08EJgNnhcs2uvsFyc4vIiLBSLXP48QYZSelsN9sYFRkgZkVA3eF9+8HjDOzfmY20Myejvr5WsSu14b3ExGRLEvW5/FvhFoYkf0dEHrG45VkB3f3RWZWFlV8JLDB3TeGz/EIcJq7TyXGbTILPZ14E/AHd1+Z7JwiIhK8ZH0eDwN/AKYCkbeXPnP3j1t5zl5A5LtBaoCjEmx/MXACUGpmfd19upn1AG4EBpvZ1eHgacbMJgGTAHr27El1dXUrqysikhm1tbUF87so2UOC282sFhgc7udod+4+DZgWVbaNUB9Iov1mADMAKioqfPjw4UFVUUQkJdXV1RTK76KkfR7uXg+8lcF3lW8BDohY7h0uyzi9z0NEJBipdph3B9aZ2UtmNr/xp5XnXA4cYmZ9zGwPYCzQ2mMlpPd5iIgEI9Up2X/WmoOb2RxgOLCfmdUA17n7TDObAjwHFAOz3H1da46fwvkrgcq+ffsGcXgRkQ4r2Wir54A/Ehrp9Ga6B3f3cXHKn6Ud3oHu7guABRUVFRODPpeISEeS7LbVecDfgevNbKWZ3WNmp5lZl3aoW5upz0NEJBjJnjD/i7vPdvexQAXwAHA48LyZvWhmP2mPSraW+jxERIKRap8H7t4ALA3//NzM9gO+F1TFREQkd6UUHmb2VWAiUBa5j7tPCKZamaEOcxGRYKQ6VPcpoBR4EXgm4ien6baViEgwUr1ttbe7XxloTUREJG+k2vJ42sy+H2hNREQkb6QaHpcSCpCdZvapmX1mZp8GWbFM0FBdEZFgpBQe7t7V3YvcfS937xZe7hZ05dpKfR4iIsFI9oT5t9z9TTMbEmu93q8hItIxJeswv4LQOzH+J8Y6B0ZkvEYiIpLzkr3PY1L4z+PbpzqZpec8RESCkfIT5mY2gNA7xzs3lrn7A0FUKlM0MaKISDBSfcL8OkJTq/cjNBvuScASQnNdiYhIB5PqUN0zgZHAX9z9fOCfCD1xLiIiHVCq4bEzPDFinZl1A7bS/FWyIiLSgaTa57HCzPYFfgu8BtQSml03p6nDXEQkGElbHmZmwFR3/8TdpwMnAueFb1/lND0kKCISjKQtD3d3M3sWGBhe3hx0pUREJLel2uex0syOCLQmIiKSN1Lt8zgKOMfM3gU+B4xQo6Q8sJqJiEjOSjU89LpZERFpkuptqxvc/d3IH+CGICsmIiK5K9Xw6B+5YGbFwOGZr46IiOSDhOFhZleb2WdAefglUJ+Gl7cSeq95TtPLoEREgpEwPNx9qrt3BW4OvwSq8UVQPdz96naqY6vpOQ8RkWCk8w7zLgBmNt7MbjWzgwKsl4iI5LBUw+MeYIeZ/RPwH8Cf0Yy6IiIdVqrhUefuDpwG3OnudwFdg6uWiIjkslSf8/jMzK4GxgPHmVkR0Cm4aomISC5LteVxFvAP4AJ3/wvQG7g5sFqJiEhOS9jyMDPzkL8AtzaWu/t7hPs8GrcJtpoiIpJLkrU8FprZxWZ2YGShme1hZiPM7H7gvOCqJyIiuShZn8coYAIwx8z6AJ8AnYFi4HngdndfFWwVwcxGAycD3YCZ7v58rLKg6yEiIiEJw8PdvwDuBu42s07AfoReSftJqicws1nAKcBWdx8QUT4KuINQEN3n7jclqEcVUGVm3YFbgOdjlaVaJxERaZtUR1vh7ruBD1txjtnAnUQ8FxKeG+suQm8lrAGWm9l8QkEyNWr/Ce6+Nfz52vB+kWKViYhIgFIOj9Zy90VmVhZVfCSwwd03ApjZI8Bp7j6VUCulmfCrcG8C/uDuK+OViYhI+wg8POLoBbwfsVxD6IVT8VwMnACUmlnf8LvUY5U1MbNJwCSAnj17Ul1dncHqi4ikr7a2tmB+F6UUHma2L3BIePFtd2/XaWrdfRowLVlZ1PoZwAyAiooKHz58eJBVFBFJqrq6mkL5XZRsSvY9zWw2sJnQL+LfApvNbJaZ7dGG824BDohY7h0uyyhNyS4iEoxkz3lcQ2gakgPcfbC7DwIOJNRi+VkbzrscOMTM+oRDaCwwvw3Hi0lTsouIBCNZeJwBTHT3zxoLwp8vAk5P5QRmNgdYChxmZjVmdoG71wFTgOeAN4BH3X1da75AknOr5SEiEoBkfR4N7r4jutDda80spSlJ3H1cnPJngWdTOUZrufsCYEFFRcXEIM8jItLRJAsPDz+EZzHWNQRQHxERyQPJwqMUeI3Y4ZHzkyGaWSVQ2bdv32xXRUSkoCSbnqSsneoRCN22EhEJRrKhugeZWWnE8vFmdoeZXd7GoboiIpLHko22ehToAmBmg4DHgPeAQYQmTMxpGm0lIhKMZOGxl7t/EP48Hpjl7v8DnE9ofqqcpuc8RESCkSw8IjvKRwAvAbi7RlqJiHRgyUZbvWxmjxKair078DKAme0P7Aq4bm2m0VYiIsFI1vK4DHiC0NxWw8Lv9AD4OvDTAOuVEbptJSISjGRDdR14JMaqfYDT0Nv7REQ6pJTf52Fmg4GzgTHAJuDxoColIiK5LWF4mNmhwLjwz0fAXMDc/fh2qFubqc9DRCQYyfo83iQ0yuoUdx/m7r8B6oOvVmaoz0NEJBipTMn+IbDQzH5rZiOJPc+ViIh0IAnDw92r3H0s8C1gIaHRV18zs3vM7LvtUUEREck9yVoeALj75+7+sLtXEnpl7CrgykBrJiIiOSul8Ijk7n939xnuPjKIComISO5LOzzyiSZGFBEJRkGHh0ZbiYgEo6DDQ0REgqHwEBGRtCk8REQkbSnPbZXP1m7ZTtlVzwBwzDe/wkMTh2a5RiIi+a1DhMdX+YShRetY2tCfV/78MWVXPcPQonWU20Zm1FdyztEHcsPogdmupohI3ijo8GicGLH713txZ6dpTNl9CUsb+jO0aF3TsgMPvvoeD776XtN+e5YU8asflDN6cK+s1V1EJJcVdHi4+wJgwZ77HzJxyu6J3NlpGg/Wn8D44hebgiSWH/lTzH1sLZfN/XL9cZ3e4CcDdzDghz9vp9qLiOSugg6PSEsb+vNg/QlcWvIkd9SdHjc4ANb4wS1aKrcVTWPK6ktYuvKZpu267FHMjacPVAtFRDqcDhMeQ4vWMb74Re6oO53xxS/yakO/uAGytKE/U3ZfkrSl8vmuei6bu5rL5q5uKlOgiEhH0CHCows7m7UkXm3o12w5lnRaKhcWL2CNH8zShv5NgTL3sYcot43cW1+pEV4iUnA6RHjst0c9U3Zf3hQAjS2LctvIUmKHQjotlVi3uRqXgaYRXpEUKCKSz8zds12HwFVUVPiKFSualqtWbeHqJ9awc3dDzO0jf/lHh0G8AGncJlmHfGQrJXLfctvIbDtNo7xEClh1dTXDhw/PdjVSZmavuXtFzHUdMTxiqVq1hR8/tprdDYl/wd9bXxn3GJeXPNZ0m+u2ujExt0k3mAz0HIpIgVB45JlUwiOWyEBJJtWWR6rbJgsw3fYSyT+FFB4dos+jtUYP7tXiFtK1VWubPVAILVsTyTrkU+mMb00/ikZ6iUh7yfmWh5mNBk4GugEz3f15M/s2cCmwH/CSu9+T6BitbXmk6o/3XsX9734l5dtcqbZSMtFCAXXOi+QKtTxSP/Es4BRgq7sPiCgfBdwBFAP3uftN8Y7h7lVAlZl1B24Bnnf3N4DJZlYEPAAkDI+gjbrwJkZFlV1bdSD3RrVQIL1WSiZaKAADNt/PuJ8ubra/npgXkbYItOVhZscBtcADjeFhZsXA28CJQA2wHBhHKEimRh1igrtvDe/3P8BD7r4yvHwq8G/A79394UT1CLrlkaprq9bSZfldKXfGZ6qFkk4nvTroRYJTSC2PwG9bmVkZ8HREeAwFrnf374WXrwZw9+jgaNzfgJuAF9z9xRjrn3H3kxPVIVfCI5Z4nfLpjspKNtIrWcAku/2l/hSRtiuk8MhGh3kv4P2I5RrgqATbXwycAJSaWV93n25mw4EzgD2BZ2PtZGaTgEkAPXv2pLq6uu01D8C+wG+/26VZ2Z8+2E3J+o3NfsEnerAxlQcak90CS3b7a3x9FXMfW9NsssjGcHn7G6M5r3/nTF0SkYJVW1ubs7+L0pXzo63cfRowLaqsGqhOst8MYAaEWh75lPbDgdBdveZi9aOk2oeSLGCSzeeVKFyWvl/PoR880qLlon4VkebyreWRSDbCYwtwQMRy73BZxjW+z6Nv375BHL7d3TB6YIu+iNcffY1L/y9xCyXVgEnUOmlNuMSaibiRRoCJ5Lds9HmUEOowH0koNJYDZ7v7uqDqkMt9HkGJfB4l1SfmU+mgT9S3kmj/dJ7aV/+KFKp8a3lkrcPczOYQuguzH/BX4Dp3n2lm3wduJzTCapa73xjQ+RtbHhPfeeedIE6RVxI9MZ9KB31bwiXR8cttY9xgAZqtM+Da/h9xQZ+/w7DLMnyFRIKl8MgzHbHlkY6qVVvY8OQNvFbXJ27LIBPhEm99omMDaYfOeQd9zKgL4z46JJI1Co88oZZH26Rz6yvVocXJWiaxgqc1oZOoNXNvfSXj9SyLZIHCI8+o5ZF55/x2Ka/8+eOm5VT6NJK1TBL1p6QbOvGC5bn6I1jQMLRFPScWP81v609RK0YCVUjhkfNDdSU3tRwpFXpOM7JfZWlD/5RHfCUaSpxoXbwRYvFGh0Hs22B3150aO2zeP4JxP/11SmHzM/XFSAdS0OFRaEN180GsmYgBWPIOMzfdyNJ1+wHNhxRTRNxggfjrkoVOvGCJN+R4vZe1KWzGbriZ/35zDDOf/nJocqJWTblt5PMj/l23zyQv6baVZN+S21my40DOr96zaSRYvNFWkesSPrgYsRzrNlm822CxypPdGmssv7vuVC4qmR8zaKLL7+t0M7fWjWFm/Zcz6/yy5D4cuKbuXxOW6c2T+Uu3rUQyadhlDAPe+W5kYfPpyiL7WBpvh11YvCDuFC7JWjOxWivxWjGJbo1Fls+sPzlm6yVWq+bWujFcVDKf9V7WdO6Ti5diGE+H+2TilTUGzz/qGrhs7mremPff1FFECQ1N/UvRoXNh8YKk22gYtKRD4SF5IfbT6F8GTOPIsGTBckrRUkYVL28RKtGtg7aETWuDZvLuKwCSlkUHTx1FXFPyMDfWnQ0QM3RS2ebGkvs4ecNSxr1xBUuffqZF4LR1ufG85baRGfWVmr05zxV0eKjPo+NoOXVLy4mWr606kPeWx55wcmLx0xkJm7vrTm1z0CQrixU8N9adzUUl8+lmO+KGTrJtGsOkUXTgtHX5lyX3cXLxUibvvoJJxQtYs+xgxi37Q9PtycaggdCtSiDhusa+pHS2S+Vz5PDzU/f7C+OuuDXef3YdWkGHh7svABZUVFRMzHZdJPtuGD0QRk+PseZk4CeMCC813iJb2tCfcks9bO6uO5X/KJnHBbv/s9VBAy1bObHKYrVkutmOpKGTbJvGusULnLYsR4bTGj+YezvdhuNM3n0F/WxzU9Cs97KU1k2rOyPt7VL5/Ez9UC4ofoaLSubz3Meh0XYQO2wqi5Y23fprvA34dMPQhOsffvGOFmUGaZW95z2bgvIg+2vMdccUvc4rDQNS2ib6zxIaWOMH0+vr+x0e7/+ngg4PkdZofoss1qtivgybyL6YEhqaggPSD5rpnW7FMC7cfXnCsljB86nvnTR0Utnm1YZ+CQOnrcuR4eQ4hnF00fpmQZPqum62I+3tUvm8p+3imuLUQqiIOhooYaPvz8nFSymhgVOKlyZc73iby6rqhzK++GUerB8Rd90LDYO4puThlLaJ/vPB+hFMKnma8oiWaDSFh0gbpBM0ja6tWkvJ8pZB80z9UDz8OVFZdPB86ns3/Yt7Zv3JMUMnlW0iy+IFTluXo8MJiBs0qa5rzXbJPj9ePyylEGqghBcahnBNycM82XAMJxS9ltL6tpaNL36ZJQ39GV/8ctx1JxatTnmb6D8b9/mqvRD3v/2CDg/1eUguSnz7DM5JUBaah+zpZsFTQgM31p3ddK8/Vuiksg2AYSyoP5rb6sa0CJy2LkeH04+K/xg3qFJd1yoJVZMAAAmfSURBVJrtUvk8vvhFqhv+KeWw+d+Gw/hB8ZK01re17Lji15OuS2ebWPtc7t3i/ndc0OGhPg8pNKMH94LB90SVftniuTqq7Jwk21St2sJeT6xh5+4Gym1jUysEWgZOW5fhy3B6taEf5xc/h+O82tCvWdCs97KU1n3qe2NYWtul8jnyWI/XD0saNo/XD+P0olfibhtrfSbKFtUPYFjRuoTr0tkm1j5fSdDy0EOCItIuXn/0v7h57d78v93fbpoLDRKPlMrGaKvGEXZ3153KwfYhlcWvNvVzXFryZLPPjX0ad9SdziUlT1BCA3UUJVzfeDurLWWRfR6nFf8pbn/GiUWrU9om+s9QP8kyymfsYsuHW2N2fCg8REQi/PHeq7j/3a+wtKF/s5DL1GirdEdWZXO01eLf3UzNh39TeIiIZFO+TU9SvHfppvod2w+Ota6ovSvTnsys0sxmbN++PdtVERHJOw07P/043rqCDg93X+Duk0pLS7NdFRGRglLQ4SEiIsFQeIiISNoUHiIikjaFh4iIpE3hISIiaVN4iIhI2go6PPSch4hIMAo6PPSch4hIMAo6PEREJBgKDxERSZvCQ0RE0qbwEBGRtCk8REQkbQoPERFJm8JDRETSlvPhYWajzey3ZjbXzL4bUd7FzFaY2SnZrJ+ISEcUaHiY2Swz22pmr0eVjzKzt8xsg5ldlegY7l7l7hOBycBZEauuBB7NfK1FRCSZkoCPPxu4E3igscDMioG7gBOBGmC5mc0HioGpUftPcPet4c/XhvfDzE4E1gOdg6y8iIjEFmh4uPsiMyuLKj4S2ODuGwHM7BHgNHefCrS4BWVmBtwE/MHdV4aLhwNdgH7ATjN71t0bAvkSIiLSQtAtj1h6Ae9HLNcARyXY/mLgBKDUzPq6+3R3vwbAzH4EfBQrOMxsEjApvPiFma3LROULWClQSDNI5sP3yYU6tmcdgj5XUMfP5HH3Az7K0LHaw0HxVmQjPNLi7tOAaXHWzU6w3wxgBoCZzXD3SfG2lcK7RvnwfXKhju1Zh6DPFdTxM3lcM1vh7hWZOFa2ZWO01RbggIjl3uGyIC0I+PiFoNCuUT58n1yoY3vWIehzBXX8XPh7yjnm7sGeINTn8bS7DwgvlwBvAyMJhcZy4Gx3120lESloanmkyMzmAEuBw8ysxswucPc6YArwHPAG8KiCQ0Q6iBnZrkCmBN7yEBGRwpPzT5iLiEjuUXiIiEjaFB4JmNnBZjbTzOZluy65qtCuUaF9nyDoGgnkQXiY2QFmttDM1pvZOjO7tA3HijnXVnhdi/m23H2ju1/Qlvq3BzPrbGbLzOz/wtfoF204Vs5cIzMrNrNVZvZ0G46RM98n08xsXzObZ2ZvmtkbZja0lccp2GuUy+JN+po33D2nf4D9gSHhz10JDfPtF7XN14CuUWV9YxzrOGAI8HpUeTHwZ+BgYA/g/yLPAczL9nVIco0M2Cf8uRPwv8DR+X6NgCuAhwkN9Y5el3ffJ4Drcz/wr+HPewD76hpl/e9kFrA1xrUcBbwFbACuilrXHZiZ7bqn+5PzLQ93/9DDc1q5+2eEhvf2itrsO0CVme0JYGYTgd/EONYi4OMYp2mab8vddwGPAKdl7lsEy0Nqw4udwj/Rw+jy6hqZWW/gZOC+OJvk1ffJNDMrJfRLfyaAu+9y90+iNuvQ1yhLZhMKiiYRk8GeRGg+vnFm1i9ik6ZJX/NJzodHpPADh4MJ/cu6ibs/Rui5kblmdg4wARiTxqFjzbfVy8x6mNl0YLCZXd2GqgcufItnNaF/9bzg7vl+jW4HfgLEnPAyD79PpvUB/gb8Lnxr7z4z6xK5ga5R+4sTxDFD2EJ+RfNJX/NGzs9t1cjM9gEeBy5z90+j17v7r8Mz9N4DfDPiX+Kt5u7bCL1HJOe5ez0wyMz2BZ40swHu/nrUNnlxjSz0gq+t7v6amQ1PcO68+D4BKSF0q+lid/9fM7sDuAr4WeRGHfwa5Yp4k8G2mPQ1G5VrrbxoeZhZJ0LB8ZC7PxFnm2OBAcCTwHVpniIb820FInzrYiFRTWfIq2t0DHCqmW0m9K+0EWb2YPRGefR9glAD1ES0MOcRCpNmOvg1ymnuPs3dD3f3yfkWHJAH4WFmRui+7hvufmucbQYTeuz/NOB8oIeZ3ZDGaZYDh5hZHzPbAxgLzG9bzduPmX013OLAzPYi9KKtN6O2yZtr5O5Xu3tvdy8Ln+dldx8fuU0+fZ8guPtfgPfN7LBw0UhCL0hr0tGvUQ4pzBDOdo99sh9gGKHO3zXA6vDP96O2OQYYGLHcCZgY41hzgA+B3YT+5XZBxLrvExrJ9Wfgmmx/7zSvUTmwKnyNXgd+HmObvLxGhF78FWu0VV5+nwxfm0HAivDfexXQXdco+z9AGRGjrQjdYtxIqJ+qcdRa/2zXs60/mttKRCRDLDQZ7HBCL336K3Cdu880s+8TGgRSDMxy9xuzV8vMUHiIiEjacr7PQ0REco/CQ0RE0qbwEBGRtCk8REQkbQoPERFJm8JDRETSpvAQSZGZ1ZvZ6oifsoDOc5mZnRv+PNvMzoxaH3d+KjPbw8wWmVnezFsn+Un/gYmkbqe7D4q30sxK3L2uLScI/9KfQIx5qlLh7rvM7CXgLOChttRFJBG1PETawMx+ZGbzzexl4KVw2Y/NbLmZrbGItzqa2TVm9raZLTGzOWb2nzEOOQJYmUoImdl/RbSCtpjZ78KrqoBzMvD1ROJSy0MkdXuF35kCsMndTw9/HgKUu/vH4deJHkLoHQ4GzDez44DPCU0sOIjQ/3crgddinOOYGOU3m9m10Ru6+8+Bn4cnxVwM3Ble9TpwRCu/o0hKFB4iqYt32+oFd298AdB3wz+rwsv7EAqTrsCT7r4DwMzizU67P6G3ZUb6sbvPa1yI7PMIzzr9IHCru78GoXe7mNkuM+vqobdvimScwkOk7T6P+GzAVHe/N3IDM7ssxWPtBDqnce7rCb3X43dR5XsCX6RxHJG0qM9DJLOeAyaE33yJmfUys68Bi4DRZraXmXUFKuPs/wbQN5UTmVkloTfRXRJV3gP4yN13t/I7iCSllodIBrn782b2bWBp6I4StcB4d19pZnMJvcthK6EXLcXyB+D3KZ7uCkKvOF0WPtf8cD/I8cAzrf8WIslpSnaRLDCz64Fad78lxrongZ+4+zutPPYTwFXu/nbbaikSn25bieSeqwh1nKct/LrYKgWHBE0tDxERSZtaHiIikjaFh4iIpE3hISIiaVN4iIhI2hQeIiKSNoWHiIik7f8DH7BVF1CFrLoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Interpolate asd data linearly.\n", - "\n", - "sample_rate = 256\n", - "dt=1./sample_rate\n", - "Nt = len(data_L1)\n", - "freq_rfft = np.fft.rfftfreq(Nt, dt)\n", - "\n", - "asd_interp = np.interp(freq_rfft, freq, asd) \n", - "\n", - "plt.loglog(freq, asd,'-o',label='L1 ASD')\n", - "plt.loglog(freq_rfft, asd_interp, 'x',label='Interpolation')\n", - "\n", - "plt.grid('on')\n", - "plt.ylabel('ASD (strain/rtHz)')\n", - "plt.xlabel('Freq (Hz)')\n", - "plt.legend(loc='upper center')\n", - "\n", - "# The frequency range is set here, which comes from the calculation of the LIGO detection range. \n", - "# The limit of the seismic isolation systems designed by aLIGO is 10Hz, which is actually not good for low frequency noise below 20Hz.\n", - "# According to Nyquist–Shannon sampling theorem, for half of the sampling rate(128Hz) and above,the signal is meaningless.\n", - "f_min = 20.\n", - "f_max = 128. \n", - "plt.axis([f_min, f_max, 1e-24, 1e-19])\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXjU5bn/8fc9SVhktS5UQQWKS2UpwSjyEy2IC2pRcKdabfGg1FLUnqNCpVVPVVB6EKla1KOi1SJqNUJRaVVyAIsVBQRBqcqigBVF2UGy3L8/ZjIkYZKZzJKZzHxe15WLmee7zJ3HmDvP+jV3R0REpL4C6Q5AREQaJyUQERGJixKIiIjERQlERETiogQiIiJxUQIREZG45Kc7gFQys0HAoFatWg0/6qijANixYwctWrRIb2CNnOowcarDxKkOExetDt99992v3P2g2o5bLqwDKSoq8nfeeQeAkpIS+vXrl96AGjnVYeJUh4lTHSYuWh2a2bvuXlTbcXVhiYhIXJRAREQkLlmdQMxskJk9vGXLlnSHIiKSdbJ6EN3dZwIzi4qKhqc7Fkm+0tJS1q1bx+7du9MdSr21adOGDz74IN1hJE2zZs3o0KEDBQUF6Q5FGlBWJxBJTPHi9UyYvZINm3dxaNvm3Hjm0QwubJ/usMLWrVtHq1at6NixI2aW7nDqZdu2bbRq1SrdYSSFu7Np0ybWrVtHp06d0h2ONCAlEImoePF6xrywjF2l5QCs37yLMS8sA6BtOgOrYvfu3Y0yeWQbM+OAAw7gyy+/THco0sA0BiIRTZi9Mpw8Ku0qLWfC7JVpiigyJY/MoP8OuSmrE4i7z3T3q9u0aZPuUBqdDZt31as8V7Vs2XKfsrlz59KrVy/y8/N5/vnn67y+uLgYM+PDDz8Ml1VUVDBq1Ci6detG9+7dOf7441m9ejUAHTt2pHv37nTv3p1jjz2WsWPHNsoxIMkOWZ1AJH6Htm1er/LGoHjxek4a/wadRs/ipPFvULx4fUo+5/DDD2fq1Kn8+Mc/jnrutGnT6Nu3L9OmTQuXTZ8+nQ0bNrB06VKWLVvGiy++SNu2ezsO58yZw7Jly3j77bdZtWoV11xzTUq+D5FolEAkohvPPJrmBXnVypoX5HHjmUenKaLEVI7prN+8C2fvmE4qkkjHjh3p0aMHgUDd/3tt376d+fPn8+ijj/LMM8+Eyz///HMOOeSQ8PUdOnRg//333+f6li1bMmXKFIqLi/n666+T+02IxECD6BJR5WyrG59/j9Jy56CWTbnlnO8zuLA9JSUfpTm6fd0+czkrNmyt9fjiTzezp7yiWtmu0nJuen4p097+NOI1xx7amlsHdU1qnFW99NJLDBw4kKOOOooDDjiAd999l+OOO46LL76Yvn37Mm/ePAYMGMDll19OYWFhxHu0bt2aTp068dFHH9G7d++UxSoSiVogUqvBhe055rutAXj0p0UZNYW3vmomj2jlDWHatGlceumlAFx66aXhbqwOHTqwcuVKxo0bRyAQYMCAAbz++uu13icX9rOTzJTVLZDK3Xi7dOmS7lAavUz/HRWtpXDS+DdYH2ECQPu2zZl+TZ9UhVWrr7/+mjfeeINly5ZhZpSXl2NmTJgwATOjadOmnHXWWZx11lm0a9eO4uJiBgwYsM99tm3bxpo1a6jcbVqkIWV1C0SzsKRSpo3pvPTSS/zkJz9h7dq1rFmzhs8++4xOnToxb948Fi1axIYNG4DgjKylS5dyxBFH7HOP7du3c+211zJ48OCIYyQiqZbVCUQSly3T+wcXtmfc+d1p37Y5RrDlMe787gl3y+3cuZMOHTqEvyZOnMjChQvp0KEDzz33HNdccw1du+7bOnr++ecZMmRItbILLriAadOmsXHjRgYNGkS3bt3o0aMH+fn5jBw5Mnxe//796datGyeccAKHH344Dz30UELfg0i8sroLSxKX6V1X9TG4sH3Sx3EqKiKPoaxbt67O62bNmrXPViajRo0Kvx44cGDE69asWVO/AEVSSC0QiUm2tEREJHmUQEREJC5KICIiEhclEBERiYsSiNTJyaJRdBFJqqxOINrOPXkMjaKLSHVZnUC0kDB51BKJLNJ27jVNmjSJnTt3pjyWqVOnVlsvEklJSQn/+Mc/wu+nTJnCk08+merQJEtldQKRxGVNy2P+JFg9t3rZ6rnB8hSLJ4GUl5dHPykONRPIiBEjuOKKK1LyWZL9lEAkN7TvBc/9dG8SWT03+L59r6TcvqSkhH79+nHhhRdyzDHHcNlll+HuTJ48mQ0bNtC/f3/69+8PwN/+9jcGDBhAr169uOiii9i+fTsQ3Ab+5ptvplevXjz33HP069eP6667jp49e9KtWzfefvttILiP1uDBg+nRowcnnngiS5cu3SeemTNn0rt3bwoLCznttNP44osvWLNmDVOmTOHee++lZ8+ezJs3j9tuu43f//73ACxZsoQTTzyRHj16MGTIEL755hsA+vXrx80338wJJ5zAUUcdxbx585JSZ9L4KYFInbKm66rTKXDR1GDSeOPO4L8XTQ2WJ8nixYuZNGkSK1asYNWqVbz55puMGjWKQw89lDlz5jBnzhy++uor7rjjDmbMmMGiRYsoKipi4sSJ4XsccMABLFq0KLxL786dO1myZAkPPvggw4YNA+DWW2+lsLCQpUuXctddd0VsQfTt25e33nqLxYsXc+mll3LPPffQsWNHRowYwQ033MCSJUs4+eSTq11zxRVXcPfdd7N06VK6d+/O7bffHj5WVlbG22+/zaRJk6qVS27TViYSk6zoyup0ChRdBXPvgVNuSmryADjhhBPo0KEDAD179mTNmjX07du32jlvvfUWK1as4IwzziAQCLBnzx769Nm7G/All1xS7fyhQ4cCcMopp7B161Y2b97M/Pnz+ctf/gLAqaeeyqZNm9i6tfqzUNatW8cll1zC559/zp49e+jUqVOdsW/ZsoXNmzfzwx/+EIArr7ySiy66KHz8/PPPB+C4447TdioSphaI5I7Vc+GdR4PJ451H9x0TSVDTpk3Dr/Py8igrK9vnHHfn9NNP580332TJkiWsWLGCRx99NHy8RYsW1c63GnvI1Hxfm1/+8peMHDmSZcuW8dBDDyX83PTK762270tykxKI5IbKMY+LpsKpt+ztzkpyEomkVatWbNu2DYATTzyRN998k08++QSAHTt28K9//avWa6dPnw7A/PnzadOmDW3atOHkk0/m6aefBoJjLwceeCCtW7eudt2WLVto3z64ceQTTzwRMZaq2rRpw/777x8e3/jTn/4Ubo2I1EZdWJIb1i+qPuZROSayflHSu7Jquvrqqxk4cGB4LGTq1KkMGzYs/Jf8HXfcUesDoZo1a0ZhYSGlpaU89thjANx2220MGzaMHj16sN9++1VLEJVuu+02LrroIvbff39OPfVUVq9eDcCgQYO48MILeemll/jDH/5Q7ZonnniCESNGsHPnTjp37szjjz+ezGqQbOTuWf913HHHeaU5c+a4xO7s++b6ETf/1Zd+tjlclil1uGLFinSHELetW7dGPeeHP/yhL1y4sAGiSY6G/u+RKT+HjVm0OgTe8Tp+t6oLS0RE4qIuLJEMVVJSku4QROqU8S0QMxtsZo+Y2XQzOyNU1sLMngiVX5buGLNV8eL1/OuL4IDrsCcWUrx4fZojEpFMktIEYmaPmdlGM3u/RvlAM1tpZh+b2ei67uHuxe4+HBgBVE6SPx94PlR+bkqCz3HFi9cz5oVllJYHFxJ+ue1bxrywLOOSiGfTM3cbMf13yE2pboFMBao93NnM8oAHgLOAY4GhZnasmXU3s7/W+Dq4yqVjQ9cBdAA+C71OzaZBOW7C7JXsKq1etbtKy5kwe2WaItpXs2bN2LRpk355pZm7s2nTJpo1a5buUKSBpXQMxN3nmlnHGsUnAB+7+yoAM3sGOM/dxwE/qnkPC66cGg+84u6LQsXrCCaRJdSSBM3sauBqgHbt2oX7k7dv366+5Ris37yr1vLt2z0j6tDMaNGiBZ999ln0kzOMu8e8KLAxKC8vZ8eOHaxdu7bBPlP/Lycu0TpMxyB6e/a2HiCYDHrXcf4vgdOANmbWxd2nAC8A95vZOcDMSBe5+8PAwwBFRUXer18/YO+md1K39m+9ETGJtG/bnJYtA6rDBOnnMHGqw8QlWocZPwvL3ScDk2uU7QB+Fu1aMxsEDOrSpUuKosteN555NGNeWFatG6t5QR43nnk0bPkojZGJSKZIxyys9cBhVd53CJUlneuBUnEbXNieced3pyAv2M1yUMumjDu/O4ML26c5MhHJFOlIIAuBI82sk5k1AS4FZqQhDolicGF7jmrXCoBHrixS8hCRalI9jXcasAA42szWmdlV7l4GjARmAx8Az7r78hR9vp6JniBNcBKR2qQ0gbj7UHc/xN0L3L2Duz8aKn/Z3Y9y9++5+50p/Hx1YSWg6kLC4U+8k3FrQEQkvTJ+EF3So3IhYVlFaCHh9uBCQoC26QxMRDJGxm9lkgh1YcWvMSwkFJH0yuoEoi6s+G2oZSFhbeUiknuyOoFI/A5t27xe5SKSe7I6gagLK343nnk0zQvyqpWFFxKKiJDlCURdWPGrXEiYHwguJDywZRMtJBSRarI6gUhiqi4kfPCy45Q8RKQaJRCpVdV1INc+/a7WgYhINVm9DkSbKcav5jqQr7bv0ToQEakmq1sgGgOJn9aBiEg0WZ1AJH5aByIi0SiBSERaByIi0SiBSESR1oEY0P+Yg9ITkIhknKxOIFpIGL/Bhe254Ljq03Yd+Mu76/nHhtL0BCUiGSWrE4gG0RMz58Mv9ynbVVrOX/6lBCIiWZ5AJDG1DZhv2q2nTImIEojUoe1+BRHLD2hmDRyJiGQiJRCJqHjxerbvLtunvCDPuOCoyIlFRHKLEohENGH2Skor9u2qatEkn/93qBKIiGR5AtEsrPjVNv6xZZcG0EUkKKsTiGZhxa+2BYNtmqv1ISJBWZ1AJH43nnk0BYF9B8t37CnTOhARAZRApBaDC9vTstm+mzWXlrvWgYgIEON27mZWBJwMHArsAt4H/u7u36QwNkmzb3ZGThRaByIiEKUFYmY/M7NFwBigObAS2Aj0BV4zsyfM7PDUhykNrXjxempb7aF1ICIC0Vsg+wEnuXvEKTlm1hM4Evg02YFJek2YvZJI7QwDrQMRESBKAnH3BwDM7DB3/6zqMTP7rrsvSWVwkj61TeN10DoQEQFiH0RfbWbTzGy/KmUvpyKgZEpoHcj8SbB6bvWy1XOD5ckQ7/1jvS7aeXUdnz+JH7X6uNqhPoHlXJM3EwPNwhIRIPYEsgyYB8w3s++FyjK+IzyhdSDte8FzP937S3b13OD79r2SE1y894/1umjn1XW8fS/GV0ykT2A5EEwe9xdMZql3Dm7prllYIkKMs7AAd/cHzew9YKaZ3QwRu8izR6dT4KKpwV+qRVfBO48G33c6Jb33j/W6aOdFOT468CvuL5jAU+WncXnea4wsHcWCiq6AZmGJSFCsLRADcPc3gQHATcAxqQoqY3Q6JfjLde49wX+TlTwSvX+s10U7r47jf93WhafKT+O6/Bd5qvy0cPIAzcISkaBYE8jZlS/c/XOgPzAwJRFlktVzg3+Zn3JT8N+aYwbpun+s10U7r47jP2r1MZfnvcZ9ZUO4PO+1cHcWaBaWiATV2YVlZr+q8jrSKUn+jZpBKscEKrt1Op1c/X267h/rddHOq+s48Hu7l6vKrmN++bG8VXEs9xdMZmTpKN6mW+Lfu4hkhWgtkFZVvv6rxvtWqQ0tzdYvijxmsH5Reu8f63XRzqvr+PpFNB36JMub/gCABRVdGVk6ih62ivIKbWUiIkHR1oHcXvnazAZXfZ/1+l6/b1mnU5I3DhLv/WO9Ltp5Mdxn885Z4dcLKrqyAA2ii8he9dlMUb81ckxtW7prEF1EQLvxSh36H3NQxPIeB+nHRkSiD6IvI9jyMOB7Zra08hDBtSE9UhyfpNGcD7+MWL70y4oGjkREMlG0hYQ/apAoJCPVth+WxkBEBKJ0Ybn7WndfC1xb+bpqWUMEaGaDzewRM5tuZmeEyjqb2aNm9nxDxJCrant8bYtY9y8QkawWa2f26RHKzop2kZk9ZmYbzez9GuUDzWylmX1sZqPruoe7F7v7cGAEcEmobJW7XxVj7BKnyEt/ai8XkdwSbQzk5wRbGlXHPyC4BuTNGO4/FbgfeLLKPfOABwgmpXXAQjObAeQB42pcP8zdN4Zejw1dJw1kcy1PJNyuZSAiQvQxkD8DrxD8xV61pbDN3b+OdnN3n2tmHWsUnwB87O6rAMzsGeA8dx9HhDEXCy6BHw+84u4xr+Izs6uBqwHatWtHSUkJANu3bw+/lrrtlw87yiKU57nqMEH6OUyc6jBxidZhtIWEW8xsO1AYGvdIhvZA1YdTrQN613H+L4HTgDZm1sXdp5jZAcCdQKGZjQkln5qxPww8DFBUVOT9+vUDoKSkhMrXUrcmc//GjrJ9mxuBgKkOE6Sfw8SpDhOXaB1GHQ519/LQeMXh7t7gj65198nA5BplmwiOiUgKqQtLROoS63ya/YHlZvY2sKOy0N3PjeMz1wOHVXnfIVSWdGY2CBjUpUuXVNw+67VpXsDmXftmC83CEhGIPYH8JomfuRA40sw6EUwclwI/TuL9w9x9JjCzqKhoeCrun+00C0tE6hJtFtZs4FWCA9gf1vfmZjYN6AccaGbrgFvd/VEzGwnMJjjz6jF3X17HbeKmFkhivlEXlojUIVoL5EqCD466zcyOAv5JMKG85u476rwScPehtZS/DLxcz1jrTS2QxOSZUe77rjrXTlgiAtFnYf2b4FqOqWYWIDhb6izgJjPbBfzN3e9JeZSSFpGSB4B2whIRqMcfk+5e4e4L3P237n4SwbGLlAx+J4uZDTKzh7ds2ZLuUBqlvFoGO9QCERGIcRDdzA4ChgMdq17j7sNSE1ZyqAsrMWqBiEhdYp2F9RIwD3gNKE9dOJJJNAYiInWJNYHs5+43pzSSFNAsrMSoBSIidYn1j8m/mtnZKY0kBdx9prtf3aZNm3SH0ihpDERE6hLr74LrCCaRXWa21cy2mdnWVAYm6acWiIjUJaYE4u6t3D3g7s3dvXXofetUByfpVVsLBKB4cUZPwBORBlBnAjGzY0L/9or01TAhxk/TeBNTWwsEYMLslQ0YiYhkomiD6L8i+EyN/4lwzIFTkx5REmkab2Lat23O+lqei15buYjkjmgr0a8O/du/YcKRTHLjmUdz/fQlEY9pP0URiXlCjZl1M7OLzeyKyq9UBibpN7iwfa3Hau/cEpFcEetK9FsJ7qp7LMFNEM8C5lPlWeciIpJbYm2BXAgMAP7t7j8DfgBk/OIKDaKLiKROrAlkl7tXAGVm1hrYSPWnCmYkLSQUEUmdWLcyecfM2gKPAO8C24EFKYtKREQyXtQEYmYGjHP3zcAUM3sVaO3uS1MenYiIZKyoCcTd3cxeBrqH3q9JdVAiIpL5Yh0DWWRmx6c0EhERaVRiHQPpDVxmZmuBHQTXkbm790hZZEmg7dxFRFIn1gRyZkqjSBFtZSIikjqxdmHd4e5rq34Bd6QyMMl82pFXJLfFmkC6Vn1jZnnAcckPRxqTMS9oIp5ILou2nfsYM9sG9Ag9SGpr6P1Ggs9Jlyy3/34FtR7bVapHS4nksjoTiLuPc/dWwITQg6QqHyZ1gLuPaaAYJY1uHdQ1+kkikpPq80z0FgBmdrmZTTSzI1IYl2SIunbkFZHcFmsC+SOw08x+APwn8AnaiVdEJKfFmkDK3N2B84D73f0BoFXqwhIRkUwXawLZZmZjgMuBWWYWAGofXc0Q2s5dRCR1Yk0glwDfAle5+7+BDsCElEWVJNrOPfW0FkQkd0WbxmsA7v5vd5/o7vNC7z919yerniO5SWtBRHJXtBbIHDP7pZkdXrXQzJqY2alm9gRwZerCk0xxTd5M+gSWVyvrE1jOFRVaDiSSq6IlkIFAOTDNzDaY2QozWwV8BAwFJrn71BTHKGnWokkeS70z9xdMDieRPoHl3F8wmaXeOc3RiUi61LmZorvvBh4EHjSzAuBAgo+33dwQwUlmuHNId66fXs7I0lHcXzCZp8pP4/K81xhZOooFFVpoKJKrYh1Ex91L3f1zJY/cU7mYcEFFV54qP43r8l/kqfLTlDxEclzMCUSkT2A5l+e9xn1lQ7g877Vwd9ZljyxIc2Qikg6xPg9EclzlmEdlt9VbFceG37/5iVoiIrkophaImbU1s+NDX1pUkYN62KpqYx4LKroysnQUPWxVmiMTkXSpswViZk2Bh4DBwGqCj7I9wsxeBEa4+57UhyiZYMfxv2DBW59WK1tQ0ZUFqPUhkquitUBuIbhlyWHuXujuPYHDCSae36Q6uEpmNtjMHjGz6WZ2Rm1lkjp3DO5e53GNg4jknmgJ5HxguLtvqywIvb4WGBLLB5jZY2a20czer1E+0MxWmtnHZja6rnu4e7G7DwdGENxWJWKZpM+bn3yd7hBEpIFFG0SvcPedNQvdfbuZeYyfMRW4nyrbv4ceifsAcDqwDlhoZjOAPGBcjeuHufvG0OuxoeuqilQmIiIpFq0F4ma2v5l9p+YXENPzTN19LlDzz9MTgI/dfVVoHOUZ4Dx3X+buP6rxtdGC7gZecfdFENyDq2aZpNaRB7eo8/jpE0saJhARyQjRWiBtgHcJDp7XFGsLJJL2wGdV3q8Detdx/i+B04A2ZtbF3afUUhZmZlcDVwO0a9eOkpISALZv3x5+LfVzSy/46au1H/9o4w7VbYz0c5g41WHiEq3DaFuZdIz7zknk7pOBydHKahx/GHgYoKioyPv16wdASUkJla8lDq/OqvOw6jY2+jlMnOowcYnWYbTt3I+ouu7DzPqb2X1mdoOZNYn7U2E9cFiV9x1CZUmlB0olX36g7t37e9/59waKRETSLdoYyLNACwAz6wk8B3wK9CS4yWK8FgJHmlmnUCK6FJiRwP0i0gOlku/3F/0g/DrSFu+ddyyG+ZMaOiwRSYNoCaS5u28Ivb4ceMzd/wf4GcGB8KjMbBqwADjazNaZ2VXuXgaMBGYDHwDPuvvyuu4TD7VAkq9yY0Wg1i3er52TyPCYiDQW0QbRq/ZXnAqMAXD3ilgfROjuQ2spfxl4OaabxMndZwIzi4qKhqfyc3JN2yawec/e7Uz22eL926PSHaKINIBoLZA3zOxZM7sP2B94A8DMDgG0jUmOmnTq3um8tW3xrim9ItkvWgK5HngBWAP0dffSUPl3gV+nMK6kUBdW6lS2P2vb4v2jjTvSF5yINIg6E4gHPePu97p71VlSLYHzUhta4jSInjr3XtKz2hbv95ZdFO7OqkwimpElkt1ifqCUmRWa2QQzWwP8N8HBb8lRgwvbR93i/Ytt6uUUyWbR1oEcZWa3mtmHwB8ITuE1d+/v7vc3SISSsXYc/4t9Hmu7oKIrD5UPCr/vMqbuhYci0nhFa4F8SHD21Y/cva+7/wEoT31YyaExkNSqucV7pHUhx9tyXn2ozs2WRaSRimU798+BOaFnbwwg8r5YGUljIKl3+YmHh1/Xti7kibXfSVd4IpJC0QbRi939UuAYYA7BWVkHm9kf9RAngeqtkKrrQm7If67aM9Q1rVck+8Q0iO7uO9z9z+4+iOC+VYuBm1MaWRKoC6thTLqkZ/h1betCNK1XJPvEPAurkrt/4+4Pu/uAVASUTOrCahiDC9vTLC/Ys1nbuhCAjqM1oC6STeqdQEQi+fDOs6OuCwE9O10kmyiBSNKc2mpdtXUhPWwVD5adG14XAlCxep526xXJEkogkjTDx0yuti5kqXfm2vwZLPXOwN5ZWUNf1gJDkWwQbTfeRs3MBgGDunTpku5Qcsaa8eeExzpq3a23oiu97/w7/7zl9DRHK5KdjrnlZXaXV3+sQuumeSy9fWBSPyerWyAaRE+Pdq32PqyytllZX2zbQ/HipD+EUiSnXfbIAjqOnrVP8gDY+m05PW59Namfl9UJRNKjasuirllZ109fko7wRLJSx9GzePOTr+s8Z+u3yd1IRAlEUmJSjd16d3ozHiw7d5+V6uNvGZHmSEUat2NueTltU+SVQCQlBhe254SC1eExj8oB9cpZWZXJ5T3vrKm9InGoq7uqoSiBSMrccPsf99nq/dr8Gexnu6ttcxKt2S0i1cXSXRVJ66Z5SY0jqxOItjJJvzXjzwm/rm1AHbRKXSQWiXZXaRZWPWgWVmY46XvB3XgrB9Tnl3flp3mvVhtQ13iISO0S7a5q16pJtT/mkiWrE4hkhqeH96k2oP5A+WAMY0rBRPoElms8RKQO8XZXVVoz/pyUrbnK6oWEkjmmnd2EoS/v3ebkmtIbeKjgXn6RV8z3A5/u3QJF4yEiQPBpnmUJjI9PuqQngwvbJy+gCNQCkYbR93ouueiy8NsFFV15vPxM+uYtp6TiB9XGQ4b++h7tlyU56/SJJXQcHX/yaN00jzXjz0l58gAlEGlAgwvbh1epV46H/KW8L0MCb3JV3qxwufbLklzVcfSshJ6ds2b8OUkfKK+LurCkQf3zltMZ+ut7qk3jXZF3BLfk/5ljA2vpF3gvXH7MLS/z4Z1npztkkZRrDN1VkSiBSIOrOR7yaPk5HBtYywV587mvbEi4fHe5M7Z4WbXH5opkk9MnliTU4mjXqklaNyVVApGG1/d6pvXdu/ajT2A5/QLvhaf3vlVxbDiJfPL2K3Dg69D3+nRGLJJ0ia59SsW03PrK6jEQLSTMbCd97zsxTe/VeIhkk06jZyWUPCZd0jMjkgdkeQLRQsLM9vTwPvQMrAqPeSyo6Mo1pTdgGL/IK642TqKV6tLY9bj1VTqOnkW8Qx2ViwHTMdZRm6xOIJL5br5jSrUpvAsqurK0ohN985ZX2+5EK9WlsRpbvIyOo2fFvZW6kdrFgIlQApG0q9oc7xNYTvfAKnZ6k/B2J1VXqve+8+9pjFSkfjqOnsVTb30a9/Vrxp/D6gzpropECUQywprx54QTxYjSX3FV6Y00pYzHC+7moYJ7w11ZnXcs5tWHRqc7XJE6Jbrp4ZEHt7WWVHsAAA/kSURBVMiYcY66aBaWZIxzD/w3I7/aO713VkVvLsibz0flHVhQ0XXvgPvaUTTcUimR2CU6LTff4ONxmZ84KqkFIhlj6K8mstD3jnn0C7zHX8r70jWwlv8peFCD6pKxihevT8oq8saUPEAJRDLMx+POqTa19z9Lr2W5H8EFefOr7ZnVJ7CccRpUlwzQcfQsrp++JO7rG0t3VSTqwpKMU3Wlep/Acg63L/jW8zkn8E+eD/wQIJxgOo6e1Wj/55PGLdHtR5rlWaPfqkcJRDJPaKV65Z5ZI0p/BcDjBffweMHd7KEJ15TeEE4w426ZyZg7p6Q5aMkFxYvXJ9TaqJQtf/SoC0sy1i09d1dbZDirojfNrIy1FQdXG1Rf6p01JiIpd/rEkoSTRyatIk+GjE8gZjbYzB4xs+lmdkao7PtmNsXMnjezn6c7RkmNbhf/lkCnk4Gag+preLLgrmqD6lpoKKmSjAHyTFxFngwpTSBm9piZbTSz92uUDzSzlWb2sZnVOanf3YvdfTgwArgkVPaBu48ALgZOSlX8kn5PD+/DgKYfVBtUn1/RjVPy3md5xRHVWiLveWe6jFFLRJIn0QHyfMvcVeTJkOoxkKnA/cCTlQVmlgc8AJwOrAMWmtkMIA8YV+P6Ye6+MfR6bOi6yvucC/wc+FOqgpfM8Ojp+dUG1bsG1jK3vBsnB97nyYK76BpYW60lMuE3M7nxdxoTkfh1SmDPqkrZ1FVVm5S2QNx9LlDzIdcnAB+7+yp33wM8A5zn7svc/Uc1vjZa0N3AK+6+qMq9Z7j7WcBlSHbrez3T7rqp2vTeK0p/zbxaWiKLyjtzzC0vpztqaYS6jJmV0IaHAJefeHhOJA8Ac080z0b5ALOOwF/dvVvo/YXAQHf/j9D7nwC93X1kLdePAq4EFgJL3H2KmfUDzgeaAkvd/YEI110NXA3Qrl2745555hkAtm/fTsuWLZP5LeacdNXhYZ++wNgPq69KX15xBCcH3mdeRbd9WiI/sFWcePqlDR5nLPRzmLhk1uHw2TsoTfBXYdsmMOnUFkmJp6FEq8P+/fu/6+5FtR3P+ASSDEVFRf7OO+8AUFJSQr9+/VL1UTkh3XVY85G4TxbcxSl57/NeeUfOK70rnFweLDuXAioYnYFTfNNdh9kgGXXY49ZX494lt1JjXs8RrQ7NrM4Eko51IOuBw6q87xAqSzozGwQM6tKlSypuL2lSc6Fh18Ba3ivvSI/AGt5ocgMH2FYml53PtfkzGFk6iqG/vodpZzfRUw0lLBmJA3JjnKMu6ZjGuxA40sw6mVkT4FJgRio+SA+UylIRxkTOK72LeRXd6Bz4ghZ8y6j8FxhZOgpATzWUsMqHOiWaPNaMPyfnkwekfhrvNGABcLSZrTOzq9y9DBgJzAY+AJ519+WpjEOy07Szm1Qb8+gaWMsHFYeRbxU051tODKwIJxhAe2flsMrt1RNNHNm2EDBRKe3CcvehtZS/DKR8moy6sLJcjS1PHiw7l2vzZ4Sn+F6X/yJ/Ke8L7N07a+iv7+HKI75m4DXj0xy8NIRkTMcFOOl73+Hp4X2ScKfskvEr0ROhLqzcMO3sJuHkMbJ0FH8sP4/dFOAO5wfm81jBPdW6sxZ+ulWr1rNcx9GJT8eFvTvlKnlEps0UpfHrez2/YRJDX96bJIaV3sSFef/HBXnzaeal3Jn/vxEH12/puZtuF/82zd+AJMNljyzgzU9qLjuLT7tWTbJ29XgyZXULxMwGmdnDW7ZsSXcokmqhgfUetirc2ugXeI/7yoZQSoDOgS9oyW5uyH+uWmvkxff+zd1j1RppzCoX/yUjebRumpfVW48kW1YnEHVh5Z7Kbd0rxzzeqjiW3TSj1APkmdOCPdyZ/79MKZgY7vba4wGeHjuER8aNSnP0jVvx4vWcNP4NOo2exUnj36B4cUpm5wMwtngZP311Bx1HJ/ZMjkqViWPp7XpYcn2oC0uyzrSzm3DtnP+E0lLuL5jMfWVDuC7/RT6sOJhutobOgS8o8wD/lT+dFRUduSH/OSrI55ptfXjj1/fwH20XMeD/nah1I/VQvHg9Y15Yxq7S4Cyn9Zt3MeaFZQBJ24E2Wc/iqKp10zwljQRkdQLRLKwc1fd6HuwL7z/73zz4XrCVcU3pDQD8b8Hvaebfkm8VmDu9Ah8DsKjicI61NYzKfwHbYfzule/Q9fULOH/AyUokMZgwe2U4eVTaVVrOhNkrE04giT75LxKNcSRHVicQd58JzCwqKhqe7lik4XW7+Ld0O7T64PrEsgu5Lv9FdnkB7Sw4NrbHA/QKfEyvwMeUEWBaef9gIqkwfvdKOzq/OoQf9CjUYHsdNmzeVa/yaJI1/bYmTcdNrqxOICKVa0XuvfXn4TGP+8qGMCr/BfZ4HgWUA4ZZ8PR8r+Anea9TRoAvfH/+K386pTThvvcO4b2lQ2hn33BY26Yc/Z+z0/ptZZpD2zZnfYRkcWjb5jFdn4ruqaq0+C81lEAkJ9xw+x9h/iR+98q5wdYFxpWlozkr8BY/yXsddyjHyLfg3735XkF72wTAV96Gm/KfIY8KAjh/31zIO2OHhO/93dZNc37MpP8xB/HUW59GLK9NQzyGWIkjtbI6gWgMRKoJrRd58fWTePbb3gCcl/cPdtKUDysOo3tgNe7BfvzKFkm5Q4dQIgGowDgjsJhyDAMc8B3Gu7M/4sNX/4929g3fYSsf+BFcNvCHOZNU5nz4ZZ3lydq8MBYa32g4Kd/OPRNoO/fkypY6vHvsCA7jCz7xQ8KtkuLyPgzNm0M+FcDeRALBZFLXvPcKCCcVgF3ehF00pTnfst4PpPJW22nO17Sm2yEt+e61f03+N5YGqRqzqA+1NuqvMW7nLpIRbr4juGZk/C0jmFXeJ5xIdtFsbyLxYCJxIM/2vUfVv78qk0vlaS1sDy0I7gJ8lG3Ye03o39J/57Hnt/vjGHlUUIGxw5tRZnl8461ozrc0sz0s884MK70ZSP8gcEN0O9XH5Scezh2Du6c7jJylBCI5r/KBUxN+Uz2RlJFHPhV8VnEAhwU2UbOxbla9hVIpWqO+8pImVr1LJw+nre0E4EDbFi5/s7zb3teffJ1xv8QbWmUXVfCvZyWPdFICEQm58XehJxfOn8SfX+3D920ty7wj5+X9g90UkE85AZxAqA0RKVHUllSqqk+v8R1ll/Foubpm0t3yksiyOoFoEF3i0vd6fhwa/C6cP4k/v7r3N/7B9g0nBd4nn3IMJ69Gz38sySFagqn0z4qjczp5aEwj82V1AtFCQklYlWQChFon+wPwfVvLJlqxP9voEVgdTijO3m6qSGJtgZxgK7kqb1bOJJFJl/RM2rYn0jCyOoGIJF3NhAIwfxJvL3qXgi+Xs4lWHMA2DrLNtGQXpeTRnG/Z4c04OLC13h83Nv9pgKxLItqDKjsogYgkqu/1nNC37lNaPnUhH/3r/Wplh7CJJpRFnYV1UuD9RptADFitrqispQQi0hAuf54jq7wtKSnhyAjz75uE/q1cv53pM67U7ZTblEBEMpgGkiWTZfUDpfREQhGR1MnqBKInEoqIpE5WJxAREUkdJRAREYmLEoiIiMQlJ7ZzN7MvgbWhtwcCX6Xw49oA8Yzax3pdtPPqOh7pWCxlNd+rDutflm11GO3cXK7D+lwb789iQ9XhEe5e+1PB3D2nvoB3Unz/h1N5XbTz6joe6VgsZRHeqw5zvA7jqadcqcP6XBvvz2Km1KG6sJJvZoqvi3ZeXccjHYulLN7vKV6qw8Slug6jnZvLdVifa+P9WcyIOsyJLqyqzOwdr+MJWxKd6jBxqsPEqQ4Tl2gd5mIL5OF0B5AFVIeJUx0mTnWYuITqMOdaICIikhy52AIREZEkUAIREZG4KIGIiEhccjqBmFkLM3vCzB4xs8vSHU9jZGadzexRM3s+3bE0ZmY2OPRzON3Mzkh3PI2NmX3fzKaY2fNm9vN0x9OYhX4vvmNmP4p2btYlEDN7zMw2mtn7NcoHmtlKM/vYzEaHis8Hnnf34cC5DR5shqpPHbr7Kne/Kj2RZrZ61mNx6OdwBHBJOuLNNPWsvw/cfQRwMXBSOuLNVPX8nQhwM/BsLPfOugQCTAWqPWzZzPKAB4CzgGOBoWZ2LNAB+Cx0WnkDxpjpphJ7HUrtplL/ehwbOi71rD8zOxeYBbzcsGFmvKnEWI9mdjqwAtgYy42zLoG4+1zg6xrFJwAfh/5a3gM8A5wHrCOYRCAL6yJe9axDqUV96tGC7gZecfdFDR1rJqrvz6G7z3D3swB1R1dRz3rsB5wI/BgYbmZ1/l7MlUfatmdvSwOCiaM3MBm438zOoeG3SWhsItahmR0A3AkUmtkYdx+Xlugaj9p+Fn8JnAa0MbMu7j4lHcE1ArX9HPYj2CXdFLVAYhGxHt19JICZ/RT4yt0r6rpJriSQiNx9B/CzdMfRmLn7JoL99pIAd59M8A8aiYO7lwAlaQ4ja7j71FjOy5Vum/XAYVXedwiVSexUh8mhekyM6i85klKPuZJAFgJHmlknM2sCXArMSHNMjY3qMDlUj4lR/SVHUuox6xKImU0DFgBHm9k6M7vK3cuAkcBs4APgWXdfns44M5nqMDlUj4lR/SVHKutRmymKiEhcsq4FIiIiDUMJRERE4qIEIiIicVECERGRuCiBiIhIXJRAREQkLkogIjEys3IzW1Llq2OKPud6M7si9HqqmV1Y4/j2Oq5tYmZzzSyntymShqEfMpHY7XL3nrUdNLP80AKtuIV+8Q8DesVzvbvvMbPXCT5T5OlEYhGJRi0QkQSY2U/NbIaZvQG8Hiq70cwWmtlSM7u9yrm3mNm/zGy+mU0zs/+KcMtTgUWxJCIz++8qraH1ZvZ46FAx2tJcGoBaICKxa25mS0KvV7v7kNDrXkAPd//ago+jPZLg8xYMmGFmpwA7CO431JPg/3eLgHcjfMZJEconmNnYmie6+2+B35pZW2AecH/o0PvA8XF+jyIxUwIRiV1tXVh/d/fKB/acEfpaHHrfkmBCaQW86O47Acysto3rDiG4N1FVN7p7+JnzVcdAzMyAp4CJ7v4ugLuXm9keM2vl7tvq9R2K1IMSiEjidlR5bcA4d3+o6glmdn2M99oFNKvHZ98GrHP3x2uUNwV21+M+IvWmMRCR5JoNDDOzlgBm1t7MDgbmAoPNrLmZtQIG1XL9B0CXWD7IzAYRfIrhqBrlBxB8mlxpnN+DSEzUAhFJInf/m5l9H1gQ7F1iO3C5uy8ys+nAe8BGgs9jiOQV4E8xftyvCD6a9O3QZ80IjYv0B2bF/12IxEbbuYukgZndBmx3999HOPYicJO7fxTnvV8ARrv7vxKLUqRu6sISyTyjCQ6m11vo6XLFSh7SENQCERGRuKgFIiIicVECERGRuCiBiIhIXJRAREQkLkogIiISFyUQERGJy/8HTPN2wJgua2gAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# This step is not necessary. Just to show a potential issue: interpolation of ASD has some points out of the curve in left side,\n", - "# I am not sure if this has a big impact on the calculation of the whitening process.\n", - "\n", - "plt.loglog(freq, asd,'-o',label='L1 ASD')\n", - "plt.loglog(freq_rfft, asd_interp, 'x',label='Interpolation')\n", - "\n", - "plt.grid('on')\n", - "plt.ylabel('ASD (strain/rtHz)')\n", - "plt.xlabel('Freq (Hz)')\n", - "plt.legend(loc='upper center')\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "whitened_signal_L1 = whiten_signal(data_L1,asd_interp)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Waveform')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZhcZZn38e9dXb0l6c6ekEBIAgn7asIOiq/IoOOwCAKOC6iAoAzOgKMwviNu4/LOjDqOjBqREdARlEXDDI6IsgcwDQQCQSCEJQuQfe+tqu73j3OqurpTXX2q0tXVXef3ua66qDp1qs7dRaV//TzPOc9j7o6IiEh/EtUuQEREhjcFhYiIFKWgEBGRohQUIiJSlIJCRESKUlCIiEhRCgqpaWbmZjann+c+ZGb3DHVNhZjZT83sa2W8bruZ7VOJmvoc51UzO6XSx5HhSUEhI4aZXWNmv+2z7aV+tp0/0Pu5+8/d/dS81/UbKsOVu49x9xXVrkNqm4JCRpIHgePNrA7AzKYB9cCRfbbNCfcVkUGgoJCRZDFBMBwRPj4JuA94oc+2l919Td7rTglbGZvN7DozMwAzu9DMHg7vZ4Pl6bA757xw+/vMbEn42kVmdlj2TcPumM+a2TNmtsXMbjWzprzni732SDN70sy2mdmtQO51fZnZHDN7IDzG+nD/7HO5VpCZTTSzu8xsq5ktNrOvZX++vH0v7eez2NfM/mhmG8Jj/NzMxkX6vyI1T0EhI4a7dwGPA28PN70deAh4uM+2vq2J9wFHAYcB5wJ/UeC9s68/POzOudXMjgRuAD4JTAR+BCw0s8a8l54LnAbMDt//QgiCoL/XmlkD8GvgZmAC8Cvg7CI/+leBe4DxwF7Av/ez33XADmAP4ILw1ld/n4UB3wCmAwcCM4AvFalJYkRBISPNA/SEwkkEQfFQn20P9HnNN919s7u/TtACOYJoLgF+5O6Pu3va3W8EOoFj8/b5nruvcfeNwF15713stccStIy+6+7d7n4bQWupP93ATGC6u3e4+8N9dwi73s4GrnX3ne6+DLixwHsV/Czcfbm7/97dO919HfBt4B2RPiWpeQoKGWkeBE40swnAZHd/CVhEMHYxATiEXVsUb+bd3wmMiXismcBVYTfNZjPbTPCX9vQI713stdOB1d57Rs7XitTxOYK/+P9kZs+Z2ccL7DMZSAIr87atLLBfwXrNbKqZ3WJmq81sK/AzYFKRmiRGFBQy0jwKjAUuBh4BcPetwJpw2xp3f2WQjrUS+Cd3H5d3G+Xuv9jN174B7JkdHwjt3d8bufub7n6xu08n6Mr6jwJnZ60DUgRdU1kzovyQoa8DDhzq7q3AhwnCSURBISOLu7cDbcCVBF1OWQ+H23bnbKe3gPxrEn4MXGpmx1hgtJn9pZm1RHivYq99lOCX+hVmVm9m7weO7u+NzOwDZpYNgE0Ev9Az+fu4exq4A/iSmY0yswOAj0b8uQFagO3AFjPbE/j7El4rNU5BISPRA8AUgnDIeijctjtB8SXgxrCr6Fx3byNopXyf4Bf0csLB6oEUe204KP/+8PFG4DyCX/L9OQp43My2AwuBz/Rz7cTlBK2tNwkGyn9BMC4SxZeBtwFbgP8ZoB6JGdPCRSK1ycy+Bezh7oXOfhKJTC0KkRphZgeY2WFhV9fRwCeAO6tdl4x8yWoXICKDpoWgu2k6wXjLvwK/qWpFUhPU9SQiIkWp60lERIqqua6nSZMm+axZs6pdhojIiPLEE0+sd/fJhZ6ruaCYNWsWbW1t1S5DRGREMbN+ZwdQ15OIiBSloBARkaIUFCIiUpSCQkREilJQiIhIUQoKEREpSkEhIiJFKShEYuS3S99gw/aoM4+LBBQUIjHR3pXmsp8/yZ1Pra52KTLCKChEYqIrHSyK153WRKBSGgWFSEykM0FAZDRjtJRIQSESE6lM0KLIZBQUUhoFhUhMhDmBckJKpaAQiYlci0JdT1IiBYVITGiMQsqloBCJiZSCQsqkoBCJiUwuKKpciIw4CgqRmFCLQsqloBCJidwYhZoUUiIFhUhMpNX1JGVSUIjEhLqepFwKCpGYyLYolBNSKgWFSExkL7hLq+9JSqSgEImJnik8FBRSGgWFSEz0TOFR5UJkxFFQiMREzxiFkkJKo6AQiQnN9STlUlCIxEQ2KMKF7kQiq2pQmNkNZrbWzJ7t53kzs++Z2XIze8bM3jbUNYrUipS6nqRM1W5R/BQ4rcjz7wHmhrdLgB8MQU0iNUldT1KuqgaFuz8IbCyyyxnATR54DBhnZtOGpjqR2qIpPKRc1W5RDGRPYGXe41Xhtl7M7BIzazOztnXr1g1ZcSIjSW6MQi0KKdFwD4pI3H2Bu8939/mTJ0+udjkiw5LGKKRcwz0oVgMz8h7vFW4TkRJlWxIZnfUkJRruQbEQ+Gh49tOxwBZ3f6PaRYmMROl09spstSikNMlqHtzMfgGcDEwys1XAtUA9gLv/ELgbeC+wHNgJfKw6lYqMfJpmXMpV1aBw9w8O8LwDnx6ickRqWjYgdNaTlGq4dz2JyCBRi0LKpaAQiYl0Wi0KKY+CQiQmci0KJYWUSEEhEhM9YxQKCimNgkIkJjRGIeVSUIjEhOZ6knIpKERiIq0xCimTgkIkJjTNuJRLQSESE6lMdgqPKhciI46CQiQm0po9VsqkoBCJCQ1mS7kUFCIxkT09Nq2kkBIpKERiQoPZUi4FhUhM9IxRVLkQGXEUFCIxoRaFlEtBIRITuTEKBYWUSEEhEhPqepJyKShEYkJdT1IuBYVITCgopFwKCpGYyE3hkalyITLiKChEYiIbEGpRSKkUFCIx0TMpoIJCSqOgEIkJzfUk5VJQiMRE9voJLVwkpVJQiMREKq2znqQ8CgqRmFDXk5RLQSESE7qOQsqloBCJCY1RSLkUFCIx0TNGUeVCZMRRUIjEhLqepFwKCpGYyHY9KSekVAoKkZhIaz0KKZOCQiQmUmlN4SHlUVCIxET+wkWusJASKChEYiK/y0k5IaVQUIjERDrvvFh1P0kpqhoUZnaamb1gZsvN7OoCz19oZuvMbEl4u6gadYrUglTGqUsYoAFtKU2yWgc2szrgOuDdwCpgsZktdPdlfXa91d0vH/ICRWpIJuO4Q33SSIf3RaKqZoviaGC5u69w9y7gFuCMKtYjUrOyLYj6uuCfvLqepBTVDIo9gZV5j1eF2/o628yeMbPbzGxGoTcys0vMrM3M2tatW1eJWkVGtOz4REMuKKpZjYw0w30w+y5glrsfBvweuLHQTu6+wN3nu/v8yZMnD2mBIiNBKtO7RZFWUkgJqhkUq4H8FsJe4bYcd9/g7p3hw+uBeUNUm0hNyQZDsi4YzNZ1FFKKagbFYmCumc02swbgfGBh/g5mNi3v4enA80NYn0jNUNeT7I6qnfXk7ikzuxz4HVAH3ODuz5nZV4A2d18IXGFmpwMpYCNwYbXqFRnJUplg+o6GpAazpXRVCwoAd78buLvPti/m3b8GuGao6xKpNWFO9Jz1lHG60xm60xlGNVT114CMAMN9MFtEBkG2RZEdo8g4/Md9L3PWdYuqWZaMEAoKkRhIZ3a9juLNrR2s2dxezbJkhFBQiMTAroPZTjqToTOVqWZZMkJE6pw0s3HAR4FZ+a9x9ysqU5aIDKaeFkXY9ZSBdAa60hnSeXNAiRQSdRTrbuAxYCmgP0FERpi+F9xlWxQAXakMzQ11VatNhr+oQdHk7ldWtBIRqZhciyLv9Nh0eIZsZyqtoJCioo5R3GxmF5vZNDObkL1VtDIRGTSFLrjLtig0TiEDidqi6AL+GfgCkL1Sx4F9KlGUiAyuVN8xCndSYZOis1tBIcVFDYqrgDnuvr6SxYhIZRQ6PTZ7dXZHKl21umRkiNr1tBzYWclCRKRydgmKTE8rQy0KGUjUFsUOYImZ3QdkZ3PV6bEiI0RujCJ/MDsbFGpRyACiBsWvw5uIjEDZKTzqc9OMkxcUalFIcQMGRbi29anu/qEhqEdEKqBv11PavafrSS0KGcCAYxTungZmhmtGiMgIVHAwW2MUElHUrqcVwCNmtpBgvAIAd/92RaoSkUHV9zoKz2tR6KwnGUjUoHg5vCWAlsqVIyKVsOt1FD2LF6lFIQOJFBTu/mUAMxsTPt5eyaJEZHBlQyE7hUc6k3fBnQazZQCRrqMws0PM7CngOeA5M3vCzA6ubGkiMliyoVCf0OmxUrqoF9wtAK5095nuPpPgSu0fV64sERlMPZMC5p0eq64niShqUIx29/uyD9z9fmB0RSoSkUGXyg1mB7PE5rcoNJgtA4l81pOZ/SNwc/j4wwRnQonICJBtPWQHs9OZvK4ntShkAFFbFB8HJgN3ALcDk8JtIjICpNPZK7Ozp8fqymyJrmiLwsxudvePAB/VvE4iI1ehFe5SufUo1PUkxQ3UophnZtOBj5vZ+PxFi7RwkcjIkT09tmdSwGDNbFCLQgY20BjFD4E/ECxQ9GSf57RwkcgIkW1RJHuNUYQtCo1RyACKtijc/XvufiBwg7vP7nNTSIiMEOm0pvCQ8kUazHb3y8zsRDP7GICZTTKz2ZUtTUQGS/asp2T+FB4660kiinpl9rXA54Frwk0NwM8qVZSIDK50xkkYJBN5a2brymyJKOrpsWcBpxPOHOvua9DkgCIjRirj1CWMhPUERW5SQA1mywCiBkWXuzvBADZmpquyRYaJju40z6zaXHSfdIGgSOk6CokoalD80sx+BIwzs4uBe9FcTyLDwk2Pvsrp33+El97a1u8+6YyTTCRyQZFKO2GDgo5udT1JcVEHs/8FuI3gquz9gS+6+79XsjARieahl9YDcPuTq/vdJztGEeZErjUBalHIwKIOZl8JLHP3v3f3z7r77ytcl4hE0JXK0PbqJgDufGpVblqOvlKZDMm6BHXhYHZ3uiccOtWikAFE7XpqAe4xs4fM7HIzm1rJokQkmqdXbaa9O80ZR0znra2d3P/CWn6/7C3WbevstV86Q68xiq6wFZGwoEWRSmf46n8vY9WmnUP+M8jwF7Xr6cvufjDwaWAa8ICZ3VvRykSkIHfnghv+xNfvfp5FyzdgBl9474G0NiW56KY2Lr6pjesf7j25czqTIZkwwgYF3eEFeKMbknSmMqxYv4OfPPwKCx7UpNCyq6gtiqy1wJvABmDK7h7czE4zsxfMbLmZXV3g+UYzuzV8/nEzm7W7xxQZqdq7gi6iJSs388CL61jw4ApuevRVDp7eypTWJq5411zedcBUWpuSbNze1eu1qYyTMMOsd9dTc0OwPsUbWzoAuOvpNbnWBsC9y97itQ07AHhzSwe/WdIzDpJKZ3Av3NUltSXqGMWnzOx+gnmfJgIXu/thu3NgM6sDrgPeAxwEfNDMDuqz2yeATe4+B/gO8K3dOabIcLetozt3f9Hy9SxZGZz2evsTqzj8K/fw+IoN/OqJVTTVJzh0z7Fs2NHFcftMBOCik/bh+gvmM21sM1vz3gfCs57qLDdGkQqDYnRjMN3bms3tAGza2c0DL64DYOXGnVxycxtfuWsZAP96zwt85pYlvPDmNra0d3PM1//ATx5+Jaj15fX86z0v4O64O79d+gZbdgY1bO3ozr0/wM6uVO5+dn8Z3qIuXDQD+Ft3XzKIxz4aWO7uKwDM7BbgDGBZ3j5nAF8K798GfN/MzCvwzepKZXhsxYaSX1dOIeWUX9YPXMaLvLwjUc7/kbJeU/pLyv5F1JHKsHlnF6MbkkxpbeSNzR1s7ejmkD3H4h6MD8yeNJp5M8fz4IvrWL+9kzOP2JMt7d0sfHoNx+0zkaNnT+AXf3qdtds6+dTJc3hl/Q7+/Y8vccHxszhixjiuuWMp7V1pvnPeEdy6+HW+/N/L+KczD+XwGWO58D8X01if4I7Ljueb//tnulIZrrlzKeu2dfKeQ6bxmXfN5VM/f5L3HTa9V92tzUm2tO8aFHV5XU9dYdfTqLBFkf1F3lxfx51PreLdB03lxkWvknF44MV1rN7czm+ffROAX7WtZPq4Zjbs6OIH97/MB+bP4O9/9QyrN7ez/x4t7OxM87nbn+GkuZP4wYfncc4PFrF6Uzu/vPQ4nn9jG5+//RkuPmkfLj5pNp/+rydp70rzvQ8eyeOvbOQnD73CBcfP4sQ5k7juvuXUJ42PnTCbJa9v5vFXNvB/DpjCXuNH8cc/r2VMY5KjZ09g1aadrNrUzn5TWxjdWMeqTe00JhOMH9VAVzpDVyoTtqYgYRbeyvpKlPn9K/dYpb+wpameI2aMK++ARVgp/4jMbArQlH3s7q+XfWCzc4DT3P2i8PFHgGPc/fK8fZ4N91kVPn453Gd9n/e6BLgEYO+995732muvlVzPhu2dzPuahl1k9yQT1uvU00ljGlgfdgPtNb6Ztds66UoF4wVzpozhhfDah/2ntvDCW9sY3ZCkozvN1NYmutIZdnamMDO2d6b4u1P24zv3vgjAf110DMfPmVSwhotuXMyazR3c/ZmTctsu+9kTLF+7ndsuO57Dv3wPnzhxNj95+BWOmjWexa9u4uy37cUdT63iw8fM5NbFK/nRR+ZxxS+eYtak0SxdvYVj95nAYys2stf4Ztq70rQ217OjM8XabZ0cPmMcT6/czKQxjdTXGTu70tTXJVi/vZNZE0fx2sadTBzdQMZh884uJrc08tbWTloak3SlMzQmE7R3p+lOO5PGNLJ+ezAQ31SfIJOBrrD101SfoEPzUhV1xIxx/PrTJ5T1WjN7wt3nF3ouUovCzP4K+DYwnWCcYibwPHBwWRUNMndfACwAmD9/fln53dpcz+2XHVdmBaX/eWJl/EVTzh9BVs6Byj5WOccZms+uHI3JBONGNbCto5u12zqZNraJ0Y1Jnl65GTM4fK9xPP/GNp56fRPHz5nIhNGN3Lp4JWMa6zhn3gx+s2Q1D720no8cN5OWpiT/cMdS3j53Mv/4vgO5duFzPLJ8Pd897wgy7lz1y6c5csY4fviReXzox4/z0trt/OwTx7BmSzufu+0Z/vKwaXzmlLms2dzOk69v4tiwu6mQ1qZ6/tzR++K7VJ8WRXaMYlRDT9fTuOZ6Lj15Xx5Zvp6P/XQxAF898xCuvv0ZHluxkWljm7j2rw7m4pva2LCji++cdzg3P/oaT76+mWNmT+DKd+/HeQseo6Euwe2fOZ5v/e+f+f2yt/jsqftxykFT+cAPH+XIvcdz08eP5ocPvMyvl6zmu+cdyZSWRr581zKOmT2Bj584m4VPr+bFt7ZzwXGzALjjqVUcuudYjttnIg8tX8+G7V2cvP9kdnameeL1jcycOJq9J4zixbe20dGdZsb4UXSnnU07u2hIJmioS+AEV6O7O+lMcL/cr1E5/6bK/c6W+rLs/8/BFvVdvwYcC9zr7kea2TsJ1s3eHasJurSy9gq3FdpnlZklgbEEA+mDrr4uwbyZWotJdjW5pZF9Jo/JPX7XgT1nh584t5ET5/b8ZX/1ew7I3f/kO/blk+/YN/f4vs+enPsl858XHsXW9hRjR9UDcOieY5k+rplRDUluueRYVqzfwVGzJuDujGuu55jZQTB84/2H4kCiSN9Ja3P9Ll1PmT5jFN25MYrsYHY7E0Y3sOe4Zn59+Qn8wx1LgeAv1LOO3JNv/PbPnH7EdN65/2QmtzSSyTjvPXQa40c1cPFNbXzutP2ZN3MCnz/tAKaPa2LOlDF8+9zDeWT5Bk49aCqJhPHQ597JmMYkyboEV526P1edun+uvusv6PlD9qwj9+pV+6dOnpO7/879886hGQN7TxyVezhpTGO/n4nsnqhB0e3uG8wsYWYJd7/PzL67m8deDMwNpytfDZwP/HWffRYCFwCPAucAf6zE+ITIUMj/S9TMciEBMGdKzxybE8c0MjH8pWdmnHrwHrnnigVEVmtzPds7U2Qynts/aFEk8q6jyI5RhC2KLR25vu3Wpnq+/9dvy73fOfP2YvGrG/nwMTNJ1iX47nlHANCYrOPk/afwzLV/kTt76rKTe4Kxpame0w7pqX3cqIYBa5fhKWpQbDazMcBDwM/NbC3hTLLlcveUmV0O/A6oI1gc6Tkz+wrQ5u4LgZ8AN5vZcmAjQZiISBGtTUncYVtHT4slnXHq8qbw6Ol6Cn7Bd6UyTBxd+Bf5xDGNXH/BUbnHJ/QZG8mGhNSuokFhZn8LLALOBHYCfwt8iKAL6Cu7e3B3vxu4u8+2L+bd7wA+sLvHEYmTsc1BOGzt6M4FRSqT6T0pYKb3GAXAhH6CQmSgFsVewHeBA4ClwCMEwXGXu2+scG0iUobWMCi2tHfnBgEz4RQedX26nkbntQYmqo9f+lE0KNz9swBm1gDMB44HPgYsMLPN7t73AjkRqbJciyJvQLs7k6Ehmdy166mx51dAf11PIlGn8GgGWgm6nMYCa4DHK1WUiJSvtamn6ymrvStNc0MdFl54ljvrKa9Foa4n6c9AYxQLCK6V2EYQDIuAb7v7piGoTUTKkB2XyD9Fdntnipaw9ZAw22WuJ4CJYxQUUthALYq9gUaCiQBXA6uA4msuikhVtTYFgbC1vWdOpR2dqdy8TgnrPXts1sTRGqOQwgYaozjNgpO/DyYYn7gKOMTMNgKPuvu1Q1CjiJRgdEOShPXuetreKygsN0PsqEZ1PcnABryOIrzA7Vkz2wxsCW/vI5jUT0EhMswkEtbr6uzOVDCPUktTga6n+rrcAPf4vAsARfINNEZxBUFL4nigm2CMYhFwA8HpsiIyDLU21efOetrRGaxjkR24TljPmtnJRILGZILm+jqSdaUuTyNxMVCLYhbwK+Dv3P2NypcjIoNhbF6LYntHMFZRqOspkQim4lC3kxQz0BjFlUNViIgMntbmJFvDgNjeGfw31/WUsNyV2dkWhS62k2LU1hSpQWOb87qeuvq2KMi1KOoSwXxPkxUUUkRlJi8XkapqbcrreurcteupMxcUCb5+1qFMalFQSP8UFCI1qLW5Pnd6bHaMInvBneWd9ZRMWL8r5YlkqetJpAaNba6noztDZyrNjj4tirpEzxQeUda3EFFQiNSg/KuzC3U9ZZf1TiooJAIFhUgNas1bkyIbFGPygiIrMVQLkMuIpqAQqUH5a1Ls6EzRXF+XWy87PxvUopAoFBQiNWh8uD715p1dbO9M57qdgFxgANTVKShkYAoKkRo0OTzdde3WzmCK8aaeoMjvbqpT15NEoKAQqUHZC+jWbusMpxjvmSU2Pxvq1PUkESgoRGpQQzLB+FH1rN3WEUwx3tBPi0JBIREoKERq1JSWpqDrqaN311Odup6kRAoKkRo1pbWRt7Z1sqMr1WswO5sNZrrgTqJRUIjUqCktTazb2tFrGVTo6XrSqbESleZ6EqlRU1obWbe9EzPLzfMEwRoUoPEJiU5BIVKjprQ00p12wHtfRxG2KDQ+IVGp60mkRk1pacrd7z1GEQaFWhQSkYJCpEZNae1ZY6JX11OYDwoKiUpBIVKjpuQtRlRoMLsuoX/+Eo2+KSI1Kr/raUyBKTx01pNEpaAQqVHNDXW5C+3G5E3hobOepFQKCpEalu1+Ktz1pKCQaBQUIjUs2/00RkEhu0FBIVLDsmc+jSkwhYeCQqJSUIjUsEJdT9mA0AV3EpWuzBapYefOn8HU1ibq63r+JlTXk5SqKkFhZhOAW4FZwKvAue6+qcB+aWBp+PB1dz99qGoUqQVzp7Ywd2pLr23ZfEhqGVSJqFpdT1cDf3D3ucAfwseFtLv7EeFNISEyCLJTeCTU9SQRVSsozgBuDO/fCJxZpTpEYqdOF9xJiaoVFFPd/Y3w/pvA1H72azKzNjN7zMz6DRMzuyTcr23dunWDXqxILclecKdFiySqio1RmNm9wB4FnvpC/gN3dzPzft5mpruvNrN9gD+a2VJ3f7nvTu6+AFgAMH/+/P7eS0To6XpSi0KiqlhQuPsp/T1nZm+Z2TR3f8PMpgFr+3mP1eF/V5jZ/cCRwC5BISLR6awnKVW1up4WAheE9y8AftN3BzMbb2aN4f1JwAnAsiGrUKRG1emCOylRtYLim8C7zewl4JTwMWY238yuD/c5EGgzs6eB+4BvuruCQmQ3afZYKVVVrqNw9w3AuwpsbwMuCu8vAg4d4tJEap5Oj5VSaQoPkZjRBXdSKgWFSMxkxybUopCoFBQiMaPTY6VUCgqRmEnkznrSP3+JRt8UkZjpuY6iyoXIiKGvikjMqEUhpdI3RSRmsnM8qUUhUemrIhIzPRfc6Z+/RKNvikjMJDSFh5RIQSESM5oUUEqloBCJmZ4xCgWFRKOgEImZXNeTrsyWiBQUIjGjricplYJCJGY0hYeUSkEhEjPZLietmS1RKShEYiY3zbiCQiJSUIjEjM56klIpKERixnTBnZRIQSESM3U660lKpKAQiRmdHiulUlCIxIxpMFtKpKAQiZlsi0JrZktUCgqRmMl2OSXrFBQSjYJCJGayPU5qUUhUCgqRmDEtXCQl0jdFJGZ01pOUSkEhEjPZtbIVFBKVgkIkZjR7rJRKQSESMwnNHislUlCIxIxmj5VSKShEYkYX3EmpFBQiMZPQBXdSIgWFSMwkNM24lEhBIRIzueso1PUkESkoRGJGF9xJqaoSFGb2ATN7zswyZja/yH6nmdkLZrbczK4eyhpFatVx+07kk+/Yh/33aKl2KTJCVKtF8SzwfuDB/nYwszrgOuA9wEHAB83soKEpT6R2jW2u55r3HEh9nToUJJpkNQ7q7s9DzxWi/TgaWO7uK8J9bwHOAJZVvEAREckZzn9S7AmszHu8Kty2CzO7xMzazKxt3bp1Q1KciEhcVKxFYWb3AnsUeOoL7v6bwTyWuy8AFgDMnz/fB/O9RUTirmJB4e6n7OZbrAZm5D3eK9wmIiJDaDh3PS0G5prZbDNrAM4HFla5JhGR2KnW6bFnmdkq4Djgf8zsd+H26WZ2N4C7p4DLgd8BzwO/dPfnqlGviEicVeuspzuBOwtsXwO8N+/x3cDdQ1iaiIj0MZy7nkREZBgw99o6ScjM1gGv7cZbTALWD1I5Q0H1VpbqrSzVW1ml1DvT3ScXeqLmgmJ3mVmbu/c7rchwo3orS/VWluqtrMGqV11PIiJSlIJCRESKUlDsauVvkIkAAAV4SURBVEG1CyiR6q0s1VtZqreyBqVejVGIiEhRalGIiEhRCgoRESkqlkEx0Mp5ZtZoZreGzz9uZrOGvspe9QxU79vN7EkzS5nZOdWosU89A9V7pZktM7NnzOwPZjazGnXm1TNQvZea2VIzW2JmDw+HBbSirv5oZmebmRdbSbLSIny+F5rZuvDzXWJmF1Wjzrx6Bvxszezc8Dv8nJn911DXWKCegT7j7+R9vi+a2eaSDuDusboBdcDLwD5AA/A0cFCffT4F/DC8fz5w6zCvdxZwGHATcM4I+HzfCYwK7182Aj7f1rz7pwP/O9w/43C/FoJVJB8D5g/XWoELge9X8zMtsd65wFPA+PDxlOFec5/9/wa4oZRjxLFFkVs5z927gOzKefnOAG4M798GvMsGWI6vggas191fdfdngEw1CuwjSr33ufvO8OFjBFPIV0uUerfmPRwNVPsMkCjfYYCvAt8COoayuD6i1jpcRKn3YuA6d98E4O5rh7jGvkr9jD8I/KKUA8QxKKKsnJfbx4NZbLcAE4ekul1FXulvmCi13k8Av61oRcVFqtfMPm1mLwP/D7hiiGrrz4A1m9nbgBnu/j9DWVgBUb8PZ4ddkbeZ2YwCzw+VKPXuB+xnZo+Y2WNmdtqQVVdYKauBzgRmA38s5QBxDAoZJszsw8B84J+rXctA3P06d98X+Dzwf6tdTzFmlgC+DVxV7VoiuguY5e6HAb+npzU/XCUJup9OJvjr/MdmNq6qFUV3PnCbu6dLeVEcgyLKynm5fcwsCYwFNgxJdbsaaSv9RarXzE4BvgCc7u6dQ1RbIaV+vrcAZ1a0ooENVHMLcAhwv5m9ChwLLKzSgPaAn6+7b8j7DlwPzBui2gqJ8n1YBSx09253fwV4kSA4qqWU7/D5lNjtBMRyMDsJrCBofmUHfg7us8+n6T2Y/cvhXG/evj+l+oPZUT7fIwkG3+aOkO/D3Lz7fwW0Dfea++x/P9UbzI7y+U7Lu38W8Nhw/myB04Abw/uTCLp9Jg7nmsP9DgBeJbzQuqRjVOuHq+aNYHGkF8NfVl8It32F4K9bgCbgV8By4E/APsO83qMI/srZQdDyeW6Y13sv8BawJLwtHOb1/hvwXFjrfcV+KQ+XmvvsW7WgiPj5fiP8fJ8OP98DhvNnCxhB194yYClw/kj4PgBfAr5ZzvtrCg8RESkqjmMUIiJSAgWFiIgUpaAQEZGiFBQiIlKUgkJERIpSUIgMwMwm5s28+aaZrc57vGgQj3OmmX2xyPOHmtlPB+t4IlHp9FiREpjZl4Dt7v4vFXjvRQTnva8vss+9wMfd/fXBPr5If9SiENkNZrY9/O/JZvaAmf3GzFaY2TfN7ENm9qdwLYt9w/0mm9ntZrY4vJ0Qbt8P6MyGhJl9wMyeNbOnzezBvEPeRTBbgMiQUVCIDJ7DgUuBA4GPAPu5+9EE8xf9TbjPvwHfcfejgLPD5wBOAJ7Me68vAn/h7ocTrIGR1QacVLGfQKSAZLULEKkhi939DYBwSvJ7wu1LCRZrAjgFOChveZNWMxsDTAPW5b3XI8BPzeyXwB1529cC0ytTvkhhCgqRwZM/C24m73GGnn9rCeBYd++1mJCZtRPMUgyAu19qZscAfwk8YWbz3H0DwTxk7RWqX6QgdT2JDK176OmGwsyOCO8+D8zJ276vuz/u7l8kaGlkp5HeD3h2iGoVARQUIkPtCmB+uJrbMoIxDQjWtj4yb8ndfw4HwZ8FFhHMrApBF1a1V62TmNHpsSLDhJn9G3CXu9/bz/ONwAPAiR4s0SsyJNSiEBk+vg6MKvL83sDVCgkZampRiIhIUWpRiIhIUQoKEREpSkEhIiJFKShERKQoBYWIiBT1/wFuGNzaJw+4CAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(times_L1,whitened_signal_L1)\n", - "plt.title('Whitened signal')\n", - "plt.xlabel('Time(s)')\n", - "plt.ylabel('Waveform')" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}