

Machine Learning applications to healthcare instrumentation

LIGO: India Peter Wakeford 18th July 2018

Table of Contents

- Optos imaging system
- Machine learning overview
- Laterality determination
 - The problem
 - Neural network performance
 - Looking inside the neural network

Retinal images

Red / Green laser reflectance

Autofluorescence

Optical coherence tomography

Retinal images

Red / Green laser reflectance

Autofluorescence

Optical coherence tomography

Year	Duration	Title	Funder	Amount	Who
2014	6 months	Automated Image Quality Assurance for Ophthalmoscopes	S3C	£17k	Siong Heng, Matt Pitkin, Craig Lawrie
2014 – 2015	1 year Nikon	Automated artefact detection for scanning laser ophthalmoscopes	CENSIS	£88k	Siong Heng Peter Wakeford
2015 – 2016	6 months	Enhancing Optos quality assurance	SU2P	£20k	Siong Heng Peter Wakeford
2016 – 2020	4 years	Automated image quality measures for scanning ophthalmoscopes	EPSRC / CDTAP	£140k	Siong Heng Peter Wakeford

Neural networks – 'traditional'

Deep Learning vs traditional Machine Learning

Deep Learning Flow

- No need to "hand-craft" features (domain knowledge, definition, detection).
 - This is especially important when dealing with images.

Convolutional neural networks

A Nikon Company Nikon

1) https://uk.mathworks.com/videos/introduction-to-deeplearning-what-are-convolutional-neural-networks--1489512765771.html

Gradient descent, back propagation

1) ALEXANDER AMINI, DANIELA RUS. MASSACHUSETTS INSTITUTE OF TECHNOLOGY, ADAPTED BY M. ATAROD/*SCIENCE*

Applications of Deep Learning

Classification

• Segmentation

Object detection

Nikon's Optos, Google's Verily ink deal for machine learning in retinal imaging

DECEMBER 30, 2016 BY BRAD PERRIELLO - LEAVE A COMMENT

f 🗾 📴 👂 in 🛨

Nikon (TYO:7731) subsidiary Optos and Google (NSDQ:GOOG) unit Verily inked a deal this week to develop technologies for machine learning-enabled retinal imaging.

The deal calls for the companies will collaborate on improving the screening for diabetic retinopathy and diabetic macular edema, both among the leading causes of blindness worldwide.

The program combines Nikon's leadership in optical engineering and precision manufacturing and Verily's machine-learning technology to help healthcare providers diagnose the conditions, according to a press release.

In February 2015, Nikon paid \$400 million to acquire Optos, marking the Japanese camera giant's 1st foray into the medical sector. Optos is the market leader in retinal imaging and its ultrawidefield technology produces images that cover more than 80% of the retina, which is greater than any other device.

A Nikon Company Nikon Clinical imaging session This is your *left* eye 1. System automatically captures image when subject in position **Operator manually selects** if left or right eye Time consuming, error prone

Multimodal – important is 4. correct!

2.

3.

Laterality determination (left or right eye)

LEFT EYE (CP)

RIGHT EYE (CP)

RIGHT EYE (ES)

The Network

Examples of image augmentation by random shifts, rotation, zoom and vertical flipping

Results

822 test images

Image mode	Left accuracy	Right accuracy	Combined accuracy
Central-pole	98.9%	98.9%	98.9%
Eyesteered	98.6%	96.0%	97.3%
		Total	98.3%

- Not currently as good as the 'hand crafted' method
- But 70ms vs 2 seconds. Easy to integrate into system

Kernel activations

Opening the box

• Feature visualization

• Attention maps

Attention maps – what is important to the network?

Next steps

- Integrate into a system
- Test!
- Optimise
- Regulatory approval (problematic?)

