

GrEAT GrEAT Network with China University of Glasgow, 3 May 2019

Research on Orbital Dynamics School of Engineering

Matteo Ceriotti & colleagues matteo.ceriotti@glasgow.ac.uk

Expertise and interests

- Orbital dynamics
- Space trajectory design
- Local/global/combinatorial optimisation
- Dynamical systems
 - Feedback control
 - Swarming, multi-agent systems
 - Artificial intelligence, decision making, tree search

2

Applications

Solar sailing

- Travelling in space using the sunlight pressure
 - Advanced solar sailing concepts

Orbital dynamics and Trajectory design

- Travelling in space in multi-body dynamics
- Hybrid propulsion

Asteroids and Future mission concepts

- How can we protect the Earth from hazardous asteroids? Can we exploit asteroids?
 - Multiple asteroid rendezvous mission with solar sailing

Space weather

Can we predict and mitigate space weather phenomena?

Debris mitigation

Can we accurately predict the orbit of lightweight, flexible debris?

MULTIPLE ASTEROID MISSION WITH SOLAR SAILING Giulia Viavattene

Alessandro Peloni Matteo Ceriotti Bernd Dachwald

Why NEOs?

A. Peloni, M. Ceriotti, B. Dachwald

Visiting multiple asteroids

<u>University</u>

Glasgow

School of Engineering

Sequence search

Characteristic acceleration:
$$a_c = 0.2 \frac{\text{mm}}{\text{s}^2}$$
 $(\frac{A}{m} = 22 \frac{\text{m}^2}{\text{kg}})$

> 1,000 unique sequences made of 4 NHATS asteroids and 1 PHA!

Solution using a solar sail

Trajectory design using ANN

Viavattene, Ceriotti

NEW SOLAR SAIL CONCEPTS

Ceriotti, McInnes, Harkness McRobb, Heiligers, Borggraefe

New solar sail concepts

Quasi-rhombic pyramid

ASTEROID ORBIT MANIPULATION AND CAPTURE

Ceriotti Tan McInnes

Collision with larger asteroid

M. Tan, C. R. McInnes, M. Ceriotti, "Low-energy near-Earth asteroid capture using momentum exchange strategies", *Journal of Guidance, Control, and Dynamics*, vol. 41, n. 3, p. 632-643, 2018. DOI: 10.2514/1.G002957

Tan, Ceriotti, McInnes

Tether-assisted fly-by

Image adapted from NASA

M. Tan, C. R. McInnes, M. Ceriotti, "Low-energy near-Earth asteroid capture using momentum exchange strategies", *Journal of Guidance, Control, and Dynamics*, vol. 41, n. 3, p. 632-643, 2018. DOI: 10.2514/1.G002957

Tan, Ceriotti, McInnes

Direct capture to the Moon

Minghu Tan, Colin McInnes, Matteo Ceriotti, "Direct and indirect capture of near-Earth asteroids in the Earth–Moon system", Celest Mech Dyn Astr (2017) 129:57–88, DOI 10.1007/s10569-017-9764-x

15 May 2018

Image: Kerbal Space Program

M. Tan, C. R. McInnes, M. Ceriotti, "Low-energy near Earth asteroid capture using Earth flybys and aerobraking", *Advances in Space Research*, vol. 61, n. 8, p. 2099-2115, 2018. DOI: 10.1016/j.asr.2018.01.027

FROM LOW THRUST TO SOLAR SAILING: A HOMOTOPIC APPROACH

N.Sullo - A.Peloni - M.Ceriotti

solution into a solar sail solution

Homotopies transforms a low-thrust

Homotopic approach

Low-thrust transfer

Sullo, Peloni, Ceriotti

Hybrid Propulsion

How to take advantage of both SEP and sail? Combine them on the same spacecraft:

Optimal pole-sitter orbits

University |

of Glasgow |

School of Engineering

You Tube https://www.youtube.com/watch?v=-PFyq5zek0Q

Matteo Ceriotti, Colin McInnes

Displaced Geostationary orbits

- Increase the capacity of the GEO ring
- Continuous thrust required
- Hybrid (sail+SEP) propulsion allows to save fuel
- Loose stationkeeping box enables further savings

Date here

Interplanetary transfers

Earth-Moon transfers with hybrid propulsion

High thrust (chemical)

+

• Low thrust (SEP)

SPACE WEATHER MONITORING

Qingying Shu Marian Scott Lyndsay Fletcher Matteo Ceriotti Peter Craigmile

Space weather monitoring

- At present, we have very few space-weather sample points, limited to a small number of scientific (rather than operational) satellites
- Satellite resources are always at a premium

- What are the best strategies for sampling space weather data to give robust forecasts?
 - Locations
 - Sampling frequencies
 - Redundancy
 - Communication options
 - Achievable orbits
- How to predict E/M storms?

Jniversity | School of

Jasgow

Thank you! Questions?

Space Glasgow

www.glasgow.ac.uk/space

🥑 @SpaceGlasgow

matteo.ceriotti@glasgow.ac.uk
@mtcerio