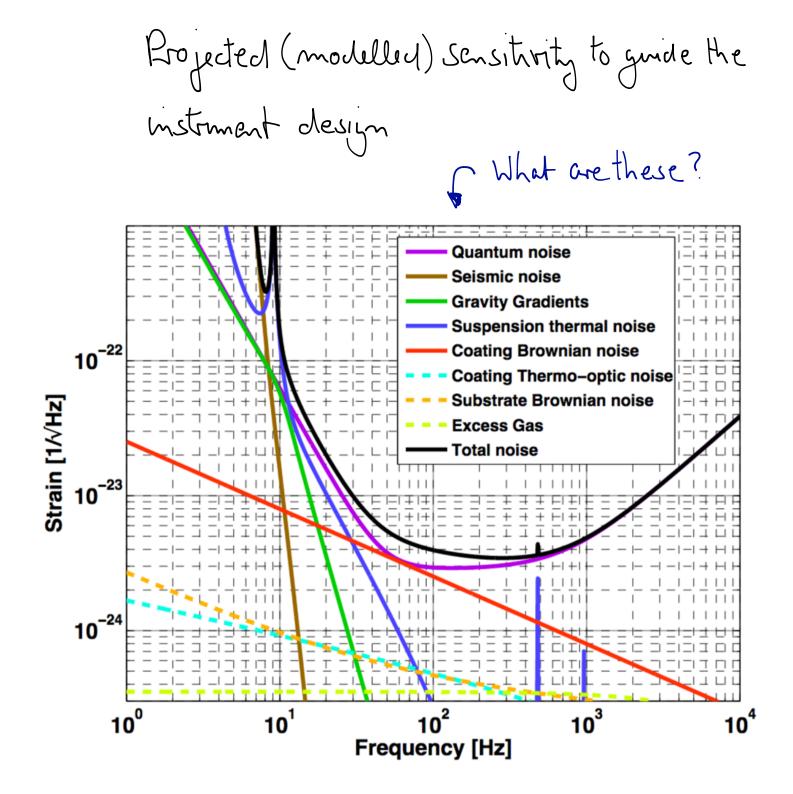
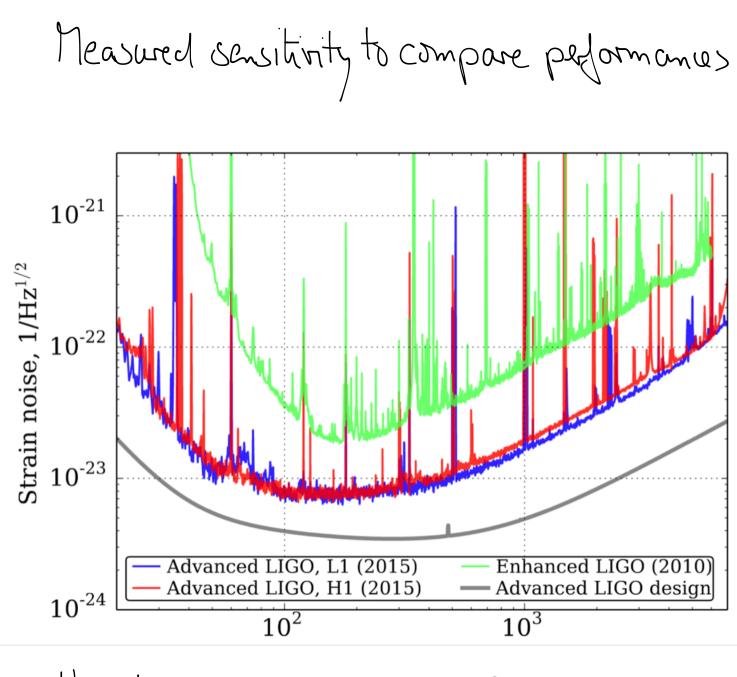

07/2017 St. Andrews



TR 28/07/2017



ΠR

ΠR

. ب

How to generate such plots?

MR

In certain conditions we can describe
$$n(t)$$
 by its frequency
components, also called 'in the frequency domain'.
This is true for time invariant processes in linear systems
simple and we ful because:
- frequency components do not mix, can be computed separately
- Components can be added (superposition priciple)
LIGO is not always that simple, but approaches that state in
'science made'.
Generally we ful to understand the simpler frequency domain
version of a system if pessible
99% of all LIGO madelling in the frequency domain!

Some basic factures of the plot:
X-axis: I the Fourier frequency of a signal or more component [H2]
y-axis: h, gravitational wave strain, with
$$h = \Delta L/L$$

with units [[Hz]], it is an
Amplitude Spectral Density (ASD)
Very brief introduction into spectral densities
Leds start with a standom process (stationary, i.e. time invariant)
 $n(t)$
 $M(t)$
 $M(t)$

How to get a description of 'n' in the frequency domain?
With the Towier transform:
$$m(f) = FT(n(t)) = \int n(t) e^{-i2Tt} dt$$

We measure for a limited time T and only get:

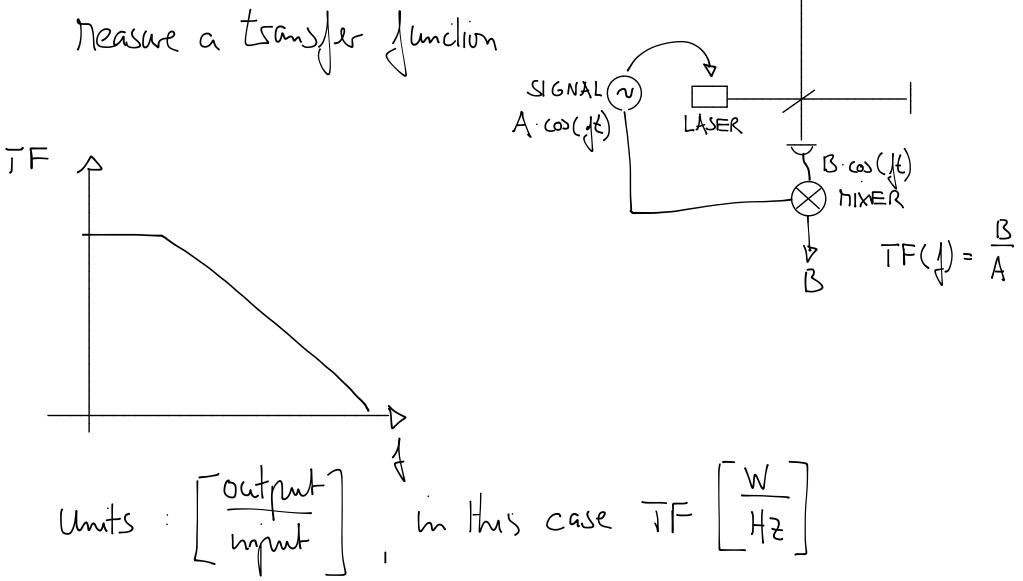
$$m_{T}(\frac{1}{2}) = \int_{-\frac{1}{2}}^{\frac{1}{2}} n(t) e^{-i2\pi t} dt$$

Most sandom processes have average constant power so that
$$M_{T}(y) \sim T$$
, is different results for different measurement times
Instead a more useful spetral representation is the power spectral density:

Power Spetral Density (PSD)

$$S_n(f) = \lim_{T \to \infty} \frac{2}{T} \left| \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$$

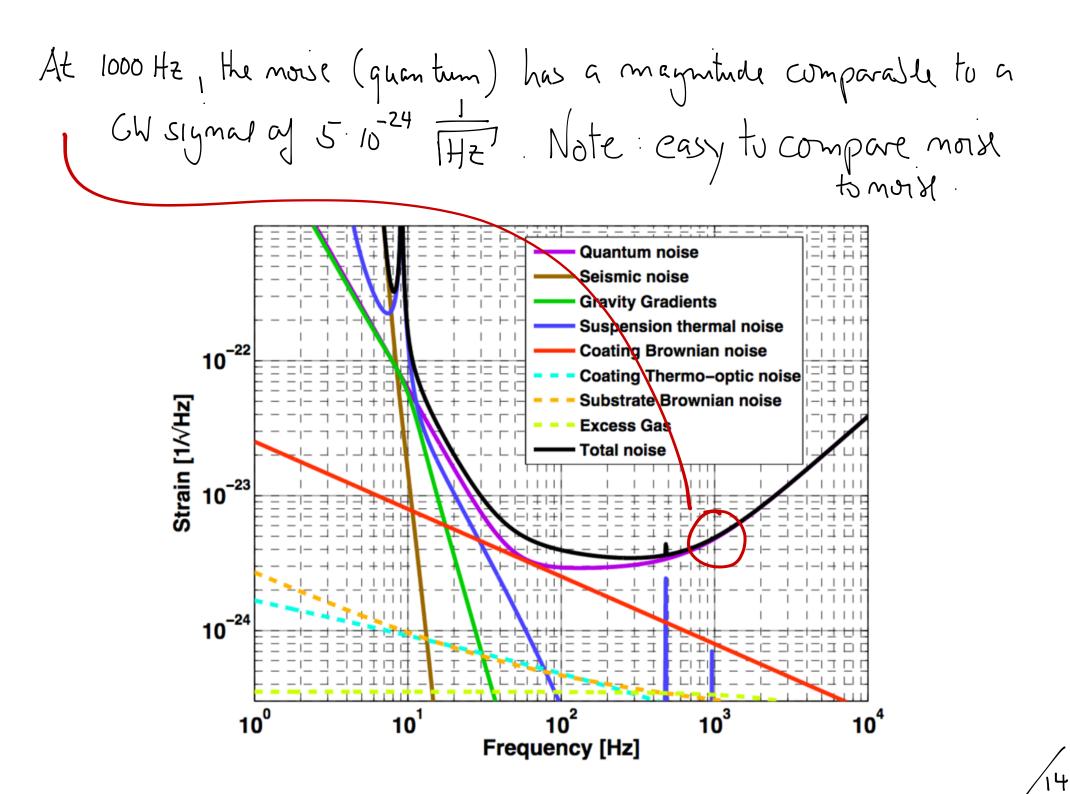
 $\lim_{T \to \infty} \frac{2}{T} \left| \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \left| \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \left| \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$
 $\lim_{T \to \infty} \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{T}{2}} (n(t) - \pi) e^{-i2\pi \int t} dt \right|^2$


>

9

NR

Units of morse curves


Example n(t) [m] n(t) $[m \cdot s] = [\frac{m}{4z}]$ Fourier transform $S_m(t)$ $[\frac{m^2}{Hz^2} \cdot \frac{1}{s}] = [\frac{m^2}{Hz}]$ power spectral density $\left[S_m(t) \quad [\frac{m}{Hz^2}]\right]$ amplitude spectral density

Recipe for sensitivity plot:
Tor each noise:
-obtain input spetrum (measure, or theoretical prediction)
- compute transfer function to out put TFN [
$$\frac{W}{Noise}$$
]
- computer transfer function for GN signal to out put
TFGW [$\frac{W}{h}$]
- compute noise in units of h as $n(y) \cdot \frac{TF_N}{TF_{GW}}$
- add curve to plot

Sum (squared) all curves four 'total moisi'

ЛR

ΠR

15