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Bayesian inference

Aim: use available data to

– Construct probability density distributions for parameters

associated with these hypotheses       

 Parameter estimation

– Evaluate which out of several hypotheses is the most likely

 Model selection

Do this while making explicit all extraneous assumptions

                

                                                   



 

Inductive logic

Propositions (i.e. statements, events) denoted by uppercase letters,

e.g. A, B, C, …, X

Boolean algebra:

– Conjuction: A and B are both true

– Disjunction: At least one of A or B is true

– Negation: A is false

– Implication: From A follows B 

 

                

                                                   



 

Probabilities for propositions

Useful to view statements as sets which are subsets of a “Universe”

– Conjunction: intersection of sets 

– Disjunction: union of sets

– Negation: complement within Universe

Each of these sets have a probability associated with them

– If A ⊂ B then

– If A and B disjoint then 

• The Universe has probability 1, so that e.g.   

 

                

                                                   



 

Conditional probability

Conditional probability:

– Product rule: 

It is customary to explicitly denote probabilities being conditional

on “all background information we have”:            ,            , ... 

– All essential formulae unaffected, e.g. product rule:

From the product rule follows Bayes' theorem:

     

                

                                                   



 

Marginalization

Note that for any A and B, 

                          and

are disjoint sets whose union is A, so  

Consider sets           such that

– They are disjoint:

– They are exhaustive:          is the Universe, or

Then

                                Marginalization rule

     

                

                                                   



 

Marginalization over a continuous variable

Consider the proposition

“The continuous variable x has the value ”

Then not necessarily a well-defined meaning of probability

Instead assign probabilities to finite intervals: 

where “pdf” is the probability density function

– Exhaustiveness written as 

Marginalization for continuous variables:

     

                

                                                   



 

Parameter estimation

Experiment performed, data d collected

Parameter θ  being measured

Consider a model H that allows to calculate probability of getting

data d if parameter θ is known (“generative model”) 

– Can calculate the likelihood 

What is wanted is instead posterior probability of θ, 

Use Bayes' theorem:

– “Prior”               is our knowledge of θ before experiment

– “Evidence”                doesn't depend on θ, ignore for now  

     

                

                                                   



 

Parameter estimation

Posterior is likelihood weighted by prior        

Conclusions drawn based on: 

– Information available before experiment  

– Experimental data obtained

Can extend to more parameters: joint posterior 

If we want posterior distribution just for variable θ
1
,                   ,

then we marginalize:           

     

                

                                                   



 

Mean of a 1D posterior:

Variance of a 1D posterior:  

Means for N variables: 

Covariance matrix:       

     

                

                                                   



 

Confidence interval is the smallest interval within whose limits a

fraction γ of the posterior is contained:

where               is minimal

In most literature γ is taken to be 0.68 or 0.95, roughly

corresponding to 1-sigma and 2-sigma intervals of Gaussian

distribution

Multi-dimensional confidence intervals:

     

                

                                                   



 

Hypothesis testing

Estimating parameters is possible if generative model known

If we want to compare possible generative models, e.g. X, Y:

calculate posterior probabilities

Bayes' theorem:    

Compute odds ratio

where factors of          have canceled out 

                       ratio of prior odds

                            ratio of evidences, or Bayes factor

     

                

                                                   



 

Hypothesis testing

Hypotheses usually have parameters associated with them

Bayes theorem relating posterior to likelihood:

or

Marginalize both sides over parameter(s):

Note that                independent of parameter(s), and posterior

                  normalized by definition, hence left hand side: 

 

Therefore evidence is given by 

     

                

                                                   



 

Hypothesis testing

Odds ratio

Bayes factor

Marginalized evidences e.g. 

Hypotheses can have arbitrary number of free parameters

– Does model that fits data the best give the highest evidence?

– If so, model with more parameters would give highest

evidence even if incorrect! 

     

                

                                                   



 

Occam's razor

For simplicity, compare two generative hypotheses:

– X has no free parameters

– Y has one free parameter, λ

Will Y automatically be favored over X?

Odds ratio

Evidence for X is straightforward, but for Y:

Assume flat prior for                        : 

     

                

                                                   



 

Occam's razor

Evidence for Y:

Flat prior:

For definiteness, assume likelihood of the form   

Evidence for Y:                    

                        

     

                

                                                   



 

Occam's razor

Evidence for Y:

Hence odds ratio becomes:

where

                     ratio of prior odds; can be set to 1 in this example

                             just compares best fits; will usually be < 1 

                                penalizes Y if experimental uncertainty on λ 

much smaller than prior range

– Will tend to be the case if λ not needed!

Occam's Razor:

   “It is vain to do with more what can be done with fewer” 

 

                

                                                   



 

Nested sampling

Parameter estimation requires computing the posterior density

distribution from likelihood and prior using Bayes' theorem:

Often the parameter space has high dimensionality (e.g. 15 for

quasi-circular binary inspiral), making it computationally

challenging to map out the likelihood 

Similarly calculation of evidence integral over high-dimensional

space:

Efficient way of obtaining both: nested sampling

 

                

                                                   



 

Nested sampling: basic idea

Nested sampling computes the evidence by rewriting the above

integration in terms of a single scalar called prior mass X

“Fraction of volume with likelihood greater than λ”

Mathematically:

Element of prior mass:

Since prior is normalized,

– Lower bound          :

surface within which no higher likelihood; 

– Upper bound          :

surface within which all points higher likelihood;    

 

                

                                                   



 

Nested sampling: basic idea

Rewrite as

Posterior obtained trivially from

Idea behind nested sampling: construct the function         by

progressively finding locations in parameter space with higher

likelihood and associated progressively smaller prior mass 

– Then use above formulae for evidence, posterior

 

                

                                                   



 

Nested sampling: schematically

                                                             

                      

     

                

                                                   



 

Nested sampling: the algorithm

Drop M samples across parameter space, sampled from the prior

These are called “live points”

– Each has likelihood associated with it

– Associated with volume s.t. likelihood lowest at the surface

– Uniformly sampled in prior mass between 0 and 1 

Discard live point with lowest likelihood L
0
, i.e. highest prior mass X

0

– Replace by new live point, sampled from the prior, which

has higher likelihood

– New point with lowest likelihood L
1 
must have X

1 
< X

0

– Statistically assign value for X
1 

Repeat the step above

 

                

                                                   



 

Nested sampling: the algorithm

Having discarded the old lowest-likelihood point with prior mass X
0
,

how do we statistically assign a prior mass X
1
 to the new lowest-

likelihood point?

Probability that the surface with highest prior mass is at X = χ is

joint probability that none of the samples have prior mass > χ 

Probability density that highest of M samples has prior mass χ

Define shrinkage ratio between new and old highest prior mass:  

This has same probability density: 

Hence we assign X
1
 by drawing a shrinkage ratio from the above

distribution

 

                

                                                   



 

Nested sampling

At �rst step: set X = 1

At kth iteration: live point with largest prior mass has  

Recall distribution of shrinkage ratios:

Mean and standard deviation of log(t):

Hence log(X
k
) has mean and stdev 

Hence mean values go like

- Very quickly reaches prior mass                                   
  where likelihood is largest

- Errors decrease exponentially

- Larger number of live points is better   

                

                                                   



 

Nested sampling: termination condition

No obvious choice for ending the sampling process

– Use practical guidelines

Estimate information as function of evidence and likelihood:

Terminate when

Or, can estimate amount of evidence yet to be accumulated and

compare with evidence already accumulated

Terminate when                          where α is user-specified  

 

                

                                                   



 

Nested sampling: accuracy

Take termination condition

Means go like

“Terminate when count k exceeds       ”

Evidence:

Recall 

Hence uncertainty on the evidence:

In gravitational-wave applications, with a few thousand live points this is

typically O(10-1) whereas for detectable signal logZ = O(102)

                

                                                   



 

Application to gravitational waves

Compute evidence for hypothesis that there is a signal in the data,        : 

Compute posterior density function for signal parameters,     :

In the case of a coalescing binary (black holes and/or neutron stars):

Posterior density for a given parameter, e.g. m
1
: 

– Use some smooth interpolation of the above posterior density

– Marginalize over all other parameters
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Masses, spins, distances

                          

      

        

https://arxiv.org/abs/1606.04856
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Binary neutron star coalescences
§ Internal structure of neutron stars not

well understood: major open problem in
astrophysics

§Large uncertainty in equation of state:

● Pressure as function of density

● Mass as function of radius

● Tidal deformability as function of mass

§Tidal deformability leaves imprint on
gravitational wave signal

● After few tens of detections, distinguish
between stiff, moderate, and soft
equation of state

● Also information in merger itself,
though hard to extract (high frequency)

Demorest et al., Nature 467, 1081 (2010)

                          

      

        

Del Pozzo et al., Phys. Lett. 111, 071101 (2013) 
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Detecting binary neutron stars

         

                                       

            

§ Would be helpful to see electromagnetic counterpart

§ Sky map for GW150914 was sent to astronomers, and they looked
(though no EM emission expected from binary black holes!)
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Detecting binary neutron stars

         

                                       

            

§ What if we had seen binary neutron star coalescence as loud as GW150914?

§ With Advanced Virgo included, 90% confidence sky error box would be
reduced from ~180 deg2 to ~10 deg2

         

                                       

            

LIGO Hanford + LIGO Livingston

         

                                       

            

LIGO Hanford + LIGO Livingston

          + Advanced Virgo
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Cosmography
§ Distance to source can be obtained from gravitational wave signal itself,

without need for calibration against other types of sources:

§ If redshift can also be obtained, the probe relationship between luminosity
distance and redshift, D

L
(z)

● Measurement of cosmological parameters

● With 2nd generation detectors: only Hubble constant

● With 3rd generation detectors: dark energy equation of state P = w ρ

Del Pozzo, PRD 86, 043011 (2012) 

                          

      

        

Zhao, Van Den Broeck, Baskaran, Li,
PRD 83, 023005 (2011)
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First access to the strong-field dynamics of spacetime

         

                                       

            

§Before the direct detection of
gravitational waves:

● Solar system tests:
weak-field; dynamics of spacetime
itself not being probed 

● Binary neutron stars:
relatively weak-field test of
spacetime dynamics

● Cosmology:
dark matter and dark energy may
signal GR breakdown

§Direct detection of GW from
binary black hole mergers:

● Genuinely strong-field dynamics

● (Presumed) pure spacetime events

Yunes, Yagi, Pretorius, Phys. Rev. D 94, 084002 (2016) 
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