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LIGO India will be constructed as an A+ instrument LIGO
Factor 4 reduction in coating loss (factor 2 in strain noise) required by 2020! INDIA
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LIGO gravitational waves: Black hole
detectors to get upgrade

By Pallab Ghosh
Science correspondent, BBC News, Washington DC
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Advanced LIGO — mirror requirements ~ Wi Strathclyde

Requirements for aLIGO at 1064 nm:

e Absorption <0.5 ppm

Scatter <2 ppm

ITM transmission: (5 + 0.25) x 1073
ETM transmission: <10 ppm
Mechanical loss: 3x10™ Goal (1x10%)
Uniformity +/- 0.5% over 34 cm
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Strategy for 3G — all (sensible) options open! “wwuw EEEGENE
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Reduced TN

mirror coatings =—>
for + and 3G

Standard IBD — new/modified materials, alternative
coating designs (e.g. mixed material, nanolayers,...),
optimised post-annealing.

Modified IBD — extend dep parameter space (e.g. ion
energy, dep rate, gas/materials), inclusion of assist
processes?

MBE — switch to crystalline mirror coatings

12
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Strategy for 3G — all (sensible) options open! Gwe Strathclyde
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Standard IBD — new/modified materials, alternative
coating designs (e.g. mixed material, nanolayers,...),
optimised post-annealing.

Benefit: manufacture of mirrors unchanged, geometry/optical spec. v/
Risk: two decades of research did not achieve factor 4 reduction in ¢...

Reduced TN Modified IBD — extend dep parameter space (e.g. ion
mirror coatings =————>»  energy, dep rate, gas/materials), inclusion of assist
for + and 3G processes?

Benefit: manufacture of mirrors similar, scalability prob OK
Risk: no major industrial driver to support this approach — we need to do it!

MBE — switch to crystalline mirror coatings

Benefit: can satisfy optical and mechanical requirements easily

Risk: needs to be grown on lattice-matched substrate or transferred,
area requires significant scaling (again industrial drivers unclear and are
also commercially sensitive)

13
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Coating technologies: ECR-IBD, RF-IBD and MBE
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MBE — located in Gas Sensing Solutions
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Crystalline coatings — possible 3 generation solution:

P growths underway
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Crystalline coatings — possible 3 generation solution:

P growths underway
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4 ion sources (soon 6 + 2 ECR plasma cavities) - independently controlled (LabView)

rotational staging — 14” 0.6 x 0.6 x 0.6 m chamber
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Industry standard 16” RF ion source (Veeco — Spector equivalent)

Any process developed in this system should be easily transferrable to e.g. LMA Grand Coater
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Amorphous silicon
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Copper mounting plate
holds samples during
deposition:

* SiO, cantilevers
(mechanical loss)

* Si0, withess samples
(optical studies)
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Absorption measurements - Glasgow 4 University
of Glasgow
Photo-thermal commonpath interferometry (PCl)
A. Alexandrovski et al. Proc. SPIE 3610, Laser Material Crystal Growth and
Nonlinear Materials and Devices, 44 (May 26, 1999); Pump bea m,
1550 nm
detector

Probe beam,

1620 nm

Lock-in amplifier

Slides courtesy of J. Steinlechner (IGR, Glasgow)
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Figure 5 - photothermal absorption set up in
UoG, capable of measuring ppm-level
absorption in optical coatings
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Other attractive solutions — elevated T dep.
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* Significant interest in “ideal glass”
structure

* Heated deposition reduces mechanical
loss much further than post- heat
treatment alone.

annealed 350C
deposited 350C

e ~10%vs~10°

* Surface mobility during deposition:
- sound velocity approaches asymptote
- distribution of bond angles narrows
- density increasing
- Heat capacity approaches bulk silicon value

* Open question — similar benefits for IBS?

X. Liu, F. Hellman, et al, PRL 113, 025503 (2014)
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High-temperature deposition
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aSi Heated deposition losses
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Characterisation — Raman
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Characterisation — EPR
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Dangling bond correlation with absorption
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Dangling bond correlation with absorption
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PHYSICAL REVIEW LETTERS 121, 191101 (2018)

Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise
in Gravitational Astronomy

R. Bimey,"z'* 1. Steinlechner,*" Z. Tornasi,” S. MacFoy,"2 D. Vine,” A.S. Bell,’ D. Gibson,> J. Hough,3
S. Rowzm,3 P. Sortais,5 S. Sproules,(’ S. Tail,3 I. W. Martin,3 and S. Reid'?

'SUPA, Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom
2SUPA, Institute for Thin Films, Sensors and Imaging, University of the West of Scotland, Paisley PAl 2BE, United Kingdom
3SUPA, Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ, United Kingdom
4Inslim!ﬁir Laserphysik und Zentrum fiir Optische Quantentechnologien, Universitit Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany
5Po[ygun Physics, 30 Chemin de Rochasson, 38240 Meylan, France
*WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom

™ (Received 9 July 2018; revised manuscript received 23 August 2018; published 6 November 2018)

Amorphous silicon has ideal properties for many applications in fundamental research and industry.
However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection.
We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low
unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the
first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but
with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is
lower by a factor of ~100. This breakthrough shows that amorphous silicon could be exploited as an
extreme performance optical coating in near-infrared applications, and it represents an important proof of
concept for future gravitational-wave detectors.

DOIL: 10.1103/PhysRevLett.121.191101
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High temp deposition of tantala (Ta,Oc)
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Tantala XRD

Intensity (1)
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60

Sample of tantala deposited at 300C
Annealed at 700C for 5 hours.

Crystalline features shown

Sample of tantala deposited at 500C
Not annealed yet

Shows no crystalline features
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Tantala Mechanical Loss
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in tantala thin film coatings
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Abstract
Brownian thermal noise in dielectric multilayer coatings limits the sensitivity
of current and future interferometric gravitational wave detectors. In this work
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Tantala Mechanical Loss
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Increase in loss after 200 due to deposition parameters? Stoichiometry? or real
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*Flaminio, Raffaele, et al. Classical and Quantum Gravity 27.8 (2010): 084030.
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Zr:Ta,Oc coatings - motivation 'Unvty i
Glasgow

» Atomic simulation work carried out at the University of Glasgow (Glasgow group
and particularly K. Evans, R. Bassiri, and K. Borisenko (Oxford)) predicted that
alternative metal species, such as zirconium, could alter the dynamical
behaviour of the hybrid fragments shown below and thus further reduce the
mechanical dissipation.

« Marty Fejer (Stanford) and Steve Penn (HWS) also identified zirconium as a
stabilising alloy which could be used to increase the crystallisation temperature,
and thus provide routes to subject mirror coatings to higher heat treatment
temperatures (typically higher heat treatments reduce the mechanical
dissipation, however titania-tantala alloys will typically crystallise by 700C.

pure Ta,05 hybrid pure ZrO,

variants of the 4 atom planar fragments found in Ta,0;
and Zr0,:Ta,0; models.
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Mechanical Loss [x10%]

Zr:Ta,05 coatings - mechanical loss
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¢ Coatings produced by Strathclyde group, using a new IBS technique, show losses
around 2x lower than measured in Ti:Ta,05 used in aLIGO

e Following predictions of (a) structural modelling and (b) increase of crystallisation
temperature, allowing higher temperature annealing to reduce loss

e Very promising for reducing coating thermal noise for A+
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* Significant effort being invested by UK groups to design, fabricate and characterise optical
coatings relevant to future and 3G GW detectors.

* aSi coatings highly attractive solution — but in mixed material design + 1550 nm

* Zr:Ta,05 shows repeatable loss at the level ¢=2.0 x 104 (40% reduction c.f. Ti:Ta,05).
* Direct side-by-side comparison of ECR-IBD and RF-IBD coatings in “same” lab in 2019.
* Successful MBE growths of GaP on silicon —> development/optimisation of GaP/AlIGaP.

* We thank the LSC, Virgo, KAGRA and ET communities for support and encouragement!
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Questions?
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* Ta,0q —recheck ultimate ¢ on pure tantala (ECR) — new system + uniform + GeNS
* Z7r0,:Ta,0; — as above
* TiO2:Ta,05 —as above —Qn: how does Ti and Zr doping compare using ECR re ¢.

o Ti++ —increase Ti content and check TiO,:Zr0O,:Ta,0s -> increase n, reduce thickness
* 7r0O, — pure zirconia for comparison

* LaTiO, — should have ¢ for initial tests completed soon — repeat if interesting

* V.0, — vanadia to compare ¢ vs structure (Raman), since v similar structure to tantala
* Sc,04 — low absorption at 1064nm from Collorado State (Krous 2010, thesis) — check ¢
* HfO, — compare ECR to RF

* aSi/SiNx —we will return to this when cryopumps are installed on systems (2019)

* Fluorides —noimmediate plans, but might need to consider this later in 2019 if above
materials do not look attractive enough for A+.
Low index too: SiO2 and Al203 — both trialed in ECR system but not optimised

Target materials for above (excl. fluorides) are in lab
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Processes and further collaborative work i

B University 7
ly ()f (r] 1\9;0\\ Unlvelsllyol
Strathclyde
UWS Glasgow

Priority 1: quantify benefit of ECR vs RF regarding 4.
(effect of dep rate, ion energy, etc)

UWS: will use Microdyn system (microwave plasma assist DC magnetron

sputtering) to:

- Pure Sc,0;4

- Pure Ta,0Os at low, standard and high microwave assist power (“microwave annealing”)
- TiO,:Ta,0¢ (aim for 15% TiO, in Ta,0x)

- Zr0,:Ta,0¢ (aim for 15% ZrO, in Ta,0x)

Strath+UWS: Install plasma assist source from UWS in IBD systems in Strathclyde
(oxygen = standard, but will investigate He “tickling” as alternative to elevated
temperature dep)

New grant with commercial partner (Gooch and Housego) to investigate scale-up
of the ECR process.

Production of multilayer coatings for further characterisation (+ direct TN!).
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