

Fabrication of amorphous and crystalline mirror coatings for reaching the thermal noise requirements 2G+ and 3G detectors

> Stuart Reid Department of Biomedical Engineering, University of Strathclyde

on behalf of Glasgow, Strathclyde, UWS and Stanford groups and industrial partners

Long-term collaborations in GW networks

Towards the future GW network

LIGO Scientific Collaboration

Focus largely on A+

LIGO India will be constructed as an A+ instrument Factor 4 reduction in coating loss (factor 2 in strain noise) required by 2020!

Focus largely on A+

LIGO India will be constructed as an A+ instrument Factor 4 reduction in coating loss (factor 2 in strain noise) required by 2020!

A+ (funding announced Feb 2019)

Advanced LIGO – mirror requirements

Requirements for aLIGO at 1064 nm:

- Absorption <0.5 ppm
- Scatter <2 ppm
- ITM transmission: $(5 \pm 0.25) \times 10^{-3}$
- ETM transmission: <10 ppm
- Mechanical loss: 3x10⁻⁵ Goal (1x10⁻⁴)
- Uniformity +/- 0.5% over 34 cm

Standard IBD – new/modified materials, alternative coating designs (e.g. mixed material, nanolayers,...), optimised post-annealing.

Reduced TN mirror coatings for + and 3G

Modified IBD – extend dep parameter space (e.g. ion energy, dep rate, gas/materials), inclusion of assist processes?

MBE – switch to crystalline mirror coatings

Standard IBD – new/modified materials, alternative coating designs (e.g. mixed material, nanolayers,...), optimised post-annealing.

niversity

University o

Stratho Glasgow

Benefit: manufacture of mirrors unchanged, geometry/optical spec. \checkmark **Risk:** two decades of research did not achieve factor 4 reduction in ϕ ...

Modified IBD – extend dep parameter space (*e.g.* ion energy, dep rate, gas/materials), inclusion of assist processes?

Benefit: manufacture of mirrors similar, scalability prob OK **Risk:** no major industrial driver to support this approach – we need to do it!

MBE – switch to crystalline mirror coatings

Benefit: can satisfy optical and mechanical requirements easily **Risk:** needs to be grown on lattice-matched substrate or transferred, area requires significant scaling (again industrial drivers unclear and are also commercially sensitive)

Coating technologies: ECR/RF IBD and MBE

14

MBE – located in Gas Sensing Solutions

Crystalline coatings – possible 3rd generation solution:

P growths underway

MBE – located in Gas Sensing Solutions

Crystalline coatings – possible 3rd generation solution:

P growths underway

300nm GaP coatings on Si

measured GaP

ECR plans

4 ion sources (soon 6 + 2 ECR plasma cavities) - independently controlled (LabView)

rotational staging – 14"

0.6 x 0.6 x 0.6 m chamber

Development of ECR-IBD

RF-IBD plans

Any process developed in this system should be easily transferrable to e.g. LMA Grand Coater

RF-IBD plans

March 2019 first RF-ICP coating runs – TiO2

Amorphous silicon

Copper mounting plate holds samples during deposition:

- SiO₂ cantilevers (mechanical loss)
- SiO₂ witness samples (optical studies)

Slides courtesy of J. Steinlechner (IGR, Glasgow)

Absorption measurements - Glasgow

Figure 5 - photothermal absorption set up in UoG, capable of measuring ppm-level absorption in optical coatings

- 1550 nm ٠
- Absorption significantly lower than for ATF coatings
- Refractive index ~3.4 • from transmission measurements
- * Measurements limited by absorption of substrate

heat treatment temperature [°C]

Other attractive solutions – elevated T dep.

High-temperature deposition

aSi Heated deposition losses

Characterisation – Raman

Characterisation – EPR

spin density [nm⁻³]

Thermal noise

High temp deposition of tantala (Ta_2O_5)

Deposition temperatures up to 500C with

some "effort"

Tantala XRD

Sample of tantala deposited at 300C

Annealed at 700C for 5 hours.

Crystalline features shown

Sample of tantala deposited at 500C

Not annealed yet

Shows no crystalline features

Tantala Mechanical Loss

Tantala Mechanical Loss

Lowest Average loss – 2.6x10⁻⁴ **undoped** tantala Increase in loss after 200 due to deposition parameters? Stoichiometry? or real effect?

Zr:Ta₂O₅ coatings - motivation

- Atomic simulation work carried out at the University of Glasgow (Glasgow group and particularly K. Evans, R. Bassiri, and K. Borisenko (Oxford)) predicted that alternative metal species, such as zirconium, could alter the dynamical behaviour of the hybrid fragments shown below and thus further reduce the mechanical dissipation.
- Marty Fejer (Stanford) and Steve Penn (HWS) also identified zirconium as a stabilising alloy which could be used to increase the crystallisation temperature, and thus provide routes to subject mirror coatings to higher heat treatment temperatures (typically higher heat treatments reduce the mechanical dissipation, however titania-tantala alloys will typically crystallise by 700C.

Zr:Ta₂O₅ coatings - mechanical loss

- Coatings produced by Strathclyde group, using a new IBS technique, show losses around 2x lower than measured in Ti:Ta₂O₅ used in aLIGO
 - Following predictions of (a) structural modelling and (b) increase of crystallisation temperature, allowing higher temperature annealing to reduce loss
 - Very promising for reducing coating thermal noise for A+

Summary

Conclusions

University of Glasgow UNIVERSECTATE UNIVERSECTATE UNIVERSECTATE UNIVERSECTATE Strathclyde Glasgow

- Significant effort being invested by UK groups to design, fabricate and characterise optical coatings relevant to future and 3G GW detectors.
- aSi coatings highly attractive solution but in mixed material design + 1550 nm
- Zr:Ta₂O₅ shows repeatable loss at the level $\phi = 2.0 \times 10^{-4}$ (40% reduction c.f. Ti:Ta₂O₅).
- Direct side-by-side comparison of ECR-IBD and RF-IBD coatings in "same" lab in 2019.
- Successful MBE growths of GaP on silicon -> development/optimisation of GaP/AlGaP.
- We thank the LSC, Virgo, KAGRA and ET communities for support and encouragement!

Questions?

Materials

- Ta_2O_5 recheck ultimate ϕ on pure tantala (ECR) new system + uniform + GeNS
- ZrO₂:Ta₂O₅ as above
- TiO2:Ta₂O₅ as above Qn: how does Ti and Zr doping compare using ECR re ϕ .
- Ti++ increase Ti content and check TiO₂:ZrO₂:Ta₂O₅ -> increase *n*, reduce thickness
- ZrO₂ pure zirconia for comparison
- LaTiO₃ should have ϕ for initial tests completed soon repeat if interesting
- V_2O_5 vanadia to compare ϕ vs structure (Raman), since v similar structure to tantala
- Sc_2O_3 low absorption at 1064nm from Collorado State (Krous 2010, thesis) check ϕ
- HfO₂ compare ECR to RF
- aSi / SiNx we will return to this when cryopumps are installed on systems (2019)
- Fluorides no immediate plans, but might need to consider this later in 2019 if above materials do not look attractive enough for A+.

Low index too: SiO2 and Al2O3 – both trialed in ECR system but not optimised

Target materials for above (excl. fluorides) are in lab

- Priority 1: quantify benefit of ECR vs RF regarding φ.
 (effect of dep rate, ion energy, etc)
- UWS: will use Microdyn system (microwave plasma assist DC magnetron sputtering) to:
 - Pure Sc₂O₃
 - Pure Ta₂O₅ at low, standard and high microwave assist power ("microwave annealing")
 - TiO₂:Ta₂O₅ (aim for 15% TiO₂ in Ta₂O₅)
 - ZrO_2 :Ta₂O₅ (aim for 15% ZrO_2 in Ta₂O₅)
- Strath+UWS: Install plasma assist source from UWS in IBD systems in Strathclyde (oxygen = standard, but will investigate He "tickling" as alternative to elevated temperature dep)
- New grant with commercial partner (Gooch and Housego) to investigate scale-up of the ECR process.
- Production of multilayer coatings for further characterisation (+ direct TN!).