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main focus: “modern controls” 



Overview 
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•  what is modern control? 

•  state space modeling 

•  “optimal” controllers 

•  and some more topics of the workshop… 



Why modern control? 
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•  so far we tweak controllers in frequency domain 
for best stability and best noise performance 

•  process might be unintuitive and sometimes requires 
a lot of trial and error 

•  often we have many error signals containing 
information about the system’s state 

•  combining them in a good way is not trivial 

> want automated ways to find “optimal” controllers 



What is modern control? 
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•  typically done in state space 
 

•  start with good model of the system (usually linear) 
 

•  define goal and find best controller w.r.t. this goal 
 

•  final controller can be translated to transfer functions 
for implementation 



State space 
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•  describe system by set of linear first-order 
differential equations: 

–  system dynamics:  
 

–  observation: 
 

–  x: internal states, u: external inputs, y: observables 
 

•  great tutorial by Gabriele: LIGO-G1400102 

!"x =A!x +B!u
!y =C!x +D!u



Observability 
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•  definition: 
“A system is observable if and only if the full state x at a 
given time can be reconstructed from a finite record of 
the measured outputs y.” 

 

•  can be reformulated as algebraic 
criterion 

 

•  system can be observable even if 
matrix C has rank smaller than dim(x) 
(e.g. only one observable to observe 
multiple states) 

!"x =A!x +B!u
!y =C!x +D!u

http://en.wikipedia.org/wiki/File:Double-Pendulum.svg 



Controllability 
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•  definition: 
“A system is controllable if and only if every given state 
x can be reached in finite time by applying an input u.” 

 

•  the dynamics of a controllable system can (in principle) 
be changed arbitrarily and the corresponding controller 
can be calculated algebraically 

 
 

http://en.wikipedia.org/wiki/File:Smooth_nonlinear_ 
trajectory_planning_control_on_a_dual_pendula_system.png 

!"x =A!x +B!u
!y =C!x +D!u



“Optimal” control 
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•  what is the optimal controller/observer? 

•  need to formulate measure of goodness 
> cost function 

•  e.g.: want to keep errors and feedbacks small 



LQR – linear quadratic regulator 
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•  cost function: 

•  quadratic in x and u, with weighting matrices Q and R  

•  can be solved analytically to find controller that 
minimizes cost J  (Matlab functions available) 

•  the art is to find good weights 

•  resulting controller is always stable but might not be 
robust to uncertainties of the plant model 

J = !xTQ!x + !uTR!u( )d t
0

∞

∫



H-infinity control 
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•  cost function:  

•  Tdist is the transfer function from external disturbances 
to the error point (matrix for MIMO systems) 

•  iterative algorithms exist to solve this approximately 

•  system uncertainties can be included to find robust 
controller that is stable within the uncertainties 

J = Tdist ∞
= sup

ω
Tdist(iω)( )



Generalized cost functions 
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•  incorporate more straight-forward performance criteria 
into cost function: 
–  noise suppression 
–  impression of unwanted control noise 
–  gain/phase margin 

•  optimize generic controller 
(e.g. described by poles + zeros) 
w.r.t. this cost function 
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Formulating a Cost Function

LIGO-G1400091

Phase margin term

Cost decreases as 
phase margin increases

Benefit "freezes out" around 
50 degrees

1

1 +Qe�Bx

1� 1

1 +Qe�Bx

Sigmoid function

Jenne Driggers, LIGO-G1400091  
 



Optimization with generalized cost 
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•  typically not analytically solvable 

•  might be high-dimensional parameter space 
with tricky cost distribution (e.g. local minima) 

•  possible approaches: 
–  Newton’s method 
–  gradient descent 
–  particle swarm optimization 
–  … 

•  good initial guess might help (e.g. existing controller) 



Limitations 
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•  assumes unchanging linear plant models 

•  can’t do anything we couldn’t already do with 
transfer functions 

•  model must be known very well, else not optimal 
or even unstable 

•  probably no canonical cost functions, 
so hand-tuning is still necessary 



“More modern” controls 
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•  Kalman filtering (time-domain optimal state estimator) 
 

•  Wiener filtering (optimal static noise cancellation 
with feedforward) 

 

•  adaptive filtering (gain control, adaptive feedforward) 

•  optimal transfer function measurements 
 

•  machine learning, e.g. for learning about an unknown 
plant (reinforcement learning, neural networks, …) 



Summary 
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•  want to simplify/automate controller design 

•  modern control theory is based on state space models 

•  good plant models must be known 

•  controllers can be optimized w.r.t. some cost function 

•  cost functions still need to be designed 

•  adaption / learning might help 



Backup slides: 
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Kalman filter 
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Generalized cost function 
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Cost Function Terms

LIGO-G1400091

Desired residual motion

Maximize area

Make ratio ~1

Make ratio ~1

Phase margin
 > 30 degrees

Gain margin
    15 dB&



Wiener filtering 
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Wiener 
Filter

Static Feedforward

CouplingDisturbance

Noise-suppressed signal

x(n) y(n)
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