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Winter commissioning workshop, February 2014 at Caltech

Participants: Brett Shapiro Gabriele Vajente Masayuki Nakano
Denis Martynov Jeff Kissel Mirko Prijatel]

Aidan Brooks Dennis Coyne Jenne Driggers Rana Adhikari

Alessio Rocchi Diego Bersanetti Koji Arai Vivien Raymond

Anamaria Effler Dirk Schuette Larry Price Yuta Michimura

Bas Swinkels Emil Schreiber Lee McCuller (+ occasional visitors)

main focus: ‘modern controls”
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Overview

what is modern control?

state space modeling

“optimal” controllers

* and some more topics of the workshop...
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Why modern control?

* so far we tweak controllers in frequency domain
for best stability and best noise performance

* process might be unintuitive and sometimes requires
a lot of trial and error

« often we have many error signals containing
iInformation about the system’s state

* combining them in a good way is not trivial

—> want automated ways to find “optimal” controllers
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What i1s modern control?

 typically done In state space
* start with good model of the system (usually linear)
» define goal and find best controller w.r.t. this goal

 final controller can be translated to transfer functions
for implementation
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State space

* describe system by set of linear first-order
differential equations:

— system dynamics: X =Ax+Bu
— observation: y=Cx+Du

— x: Internal states, u: external inputs, y: observables

» great tutorial by Gabriele: LIGO-G1400102
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Observability *=Ax+Bu
y=Cx +Du
« definition:
“A system is observable if and only if the full state x at a
given time can be reconstructed from a finite record of

the measured outputs y.”

* can be reformulated as algebraic JIIIII SIS
criterion

* system can be observable even if
matrix C has rank smaller than dim(x]

[e.g. only one observable to observe
multiple states])

http://en.wikipedia.org/wiki/File:Double-Pendulum.svg
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¢ = Ax + Bii
Cx+Du

Controllability

<l =l

* definition:
“A system is controllable if and only if every given state
x can be reached in finite time by applying an input u.”

« the dynamics of a controllable system can (in principle)
be changed arbitrarily and the corresponding controller
can be calculated algebraically

http://en.wikipedia.org/wiki/File:Smooth_nonlinear_
trajectory_planning_control_on_a_dual_pendula_system.png
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"Optimal” control

« what is the optimal controller/observer?

* need to formulate measure of goodness
— cost function

* e.g.: want to keep errors and feedbacks small
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LAR - linear quadratic regulator

cost function: J=f(XTQf+ﬁTRﬁ)dt
0
quadratic in x and u, with weighting matrices Q and R

can be solved analytically to find controller that
minimizes cost J (Matlab functions available)

the art is to find good weights

resulting controller is always stable but might not be
robust to uncertainties of the plant model
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H-infinity control

cost function: J = HTdist

o = Sup (Zjist (16()))

T4 1s the transfer function from external disturbances
to the error point (matrix for MIMO systems]

 Iterative algorithms exist to solve this approximately
« system uncertainties can be included to find robust

controller that is stable within the uncertainties
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Generalized cost functions

* Incorporate more straight-forward performance criteria
Into cost function:

— noise suppression
— Impression of unwanted control noise

— gain/phase margin

1

’—Sigmoid for phase margin cost

* optimize generic controller

(e.g. described by poles + zeros]
w.r.t. this cost function

Cost [arb]

0 20 40 60 80 100
Phase Margin [deg]
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Optimization with generalized cost

* typically not analytically solvable

* might be high-dimensional parameter space
with tricky cost distribution (e.g. local minimal)

* possible approaches:
— Newton’'s method
— gradient descent
— particle swarm optimization

« good initial guess might help (e.g. existing controller]
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Limitations

* assumes unchanging linear plant models

* can't do anything we couldn’t already do with
transfer functions

 model must be known very well, else not optimal
or even unstable

* probably no canonical cost functions,
so hand-tuning is still necessary
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“More modern” controls

« Kalman filtering (time-domain optimal state estimator]

« Wiener filtering (optimal static noise cancellation
with feedforward]

« adaptive filtering (gain control, adaptive feedforward]
* optimal transfer function measurements

* machine learning, e.g. for learning about an unknown
plant (reinforcement learning, neural networks, ...]
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Summary

« want to simplify/automate controller design

* modern control theory is based on state space models
* good plant models must be known

* controllers can be optimized w.r.t. some cost function
» cost functions still need to be designed

 adaption/learning might help
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Backup slides:
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Optimal TF measurement
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Kalman filter

Lock loss
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Generalized cost function
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Wiener filtering

Noisy signal
Perfect, noiseless signal s(n) d(n) e(n)
>
)Q )-Q Noise-suppressed signal
g9(n)
Disturbance Coupling =
Wiener y(n)
Filter W
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