ALIGNMENT NOISE COUPLING WITH LARGE BEAMS

a brief introduction

Institute of Gravitational Wave Astronomy Andreas Freise LIGO DCC G1702391

Aim

- It has been said that large beams will be a problem because the `alignment noise scales with the beam size to the power of six'.
- In this presentation I want to briefly review this statement and what it means.

Why large beam sizes?

NIVERS

BIRMINGHAM

Long arms make large beams

- Laser beams cannot be fully collimated. They are diverging due to diffraction
- For a given interferometer arm, there is a minimal beam width

$$w_{\rm min} = \sqrt{L\lambda/\pi}$$

• I.e. for L=10km, lambda = 1.5 um, $w_{min} \approx 7$ cm

Larger beams reduce thermal noise

- Several proposals for future interferometers have suggested larger beams (or alternative beam shapes) to reduce thermal noise
- Coating thermal noise scales as ~1/w

Beams are likely to get larger in future interferometric detectors

BIRMINGHAM

Alignment coupling

ARDUA ALTA

A. Freise

Alignment to GW channel

- Mis-alignment at 'm2' is a sum of a static DC misalignment and an alignment oscillation at the GW signal frequency *f_{GW}*.
- Generares modes $a_{01,0}=u_{01}(f=0 \text{ Hz})$ and $a_{01,f}=u_{01}(f=f_{GW})$
- Photo diode signal detects signal ~ a_{01,0} a*_{01,f}

VIVERSI

BIRMINGHAM

Finesse model: sideband amplitudes

UNIVERSITY^{OF} BIRMINGHAM

Why ~ w³ ?

a) coupling coefficients

Coupling of higher-order modes

 Small mis-alignment causes coupling from fundamental mode (u₀₀) into first order mode (u₀₁ or u₁₀)

30	31	32	33
20	21	22	23
10	11	12	13
0 0	01	02	0100

Coupling coefficients k defined via:

$$u_{nm}(q_1) \exp\left(i(\omega t - kz)\right) = \sum_{n',m'} k_{n,m,n',m'} u_{n'm'}(q_2) \exp\left(i(\omega t - kz')\right),$$

Alignment coupling coefficient

• For $u_{00} \rightarrow u_{01}$ (small angle γ):

UNIVERSITYOF

BIRMINGHAM

$$|k| = igg|rac{(z-{\mathrm{i}}\, z_R)\sin\gamma}{w_0}igg|$$

$$egin{array}{rl} |k| &=& rac{z_r}{w_0^2} w |\sin \gamma| \ &=& rac{\pi}{\lambda} w |\sin \gamma| \end{array}$$

w

 \sim

UNIVERSITY^{OF} BIRMINGHAM

Why ~ W^3 ?

b) resonant enhancement/ suppression

Compute cavity fields

Set of linear equations, for example:

$$\frac{a_2}{a_0} = \frac{-t_1 t_2 \exp(-i kL)}{1 - r_1 r_2 \exp(-i 2kL)}$$

UNIVERSITY^{OF} BIRMINGHAM

Resonance factor

$$d = \frac{1}{1 - r_1 r_2 \exp(-i 2kD + (1 + n + m) \Psi_{rt})}$$

$$|d| = \sqrt{\frac{1}{1 - R_1 R_2 - 2r_1 r_2 \cos\left(-2kD + (1 + n + m)\Psi_{rt}\right)}}$$

$$|d|_{\rm HG10} = \sqrt{\frac{1}{1 - R_1 R_2 - 2r_1 r_2 \cos\left(\Psi_{rt}\right)}}$$

(now assuming high finesse)

 $|d|_{
m HG10} pprox \sqrt{rac{\pi}{2L\lambda}} w^4 \sim w^2$ (for given L and λ)

(D=L)

Summary

- Coupling into u₀₁ mode increased linearly with beam size
- Larger beams cause the higher-order modes to be suppressed less, field amplitude rises with beam size squared
- The above is true for high finesse, medium frequency range, and fixed L and λ. In general the behaviour is complex but this example is useful as an order of magnitude estimate.

Conclusion

- Large beams are likely/useful/necessary in future detectors
- Large beam increase the coupling of alignment noise into the gravitational wave channel, in this example as $\sim w^6$
- Combination of:
 - stronger coupling into a u_{01} mode (~w per field), means also we get stronger alignment signals
 - and lower suppression of the u_{01} mode in the cavity (~w² per field), could be fixed with higher finesse
- Work in progress!

References

- A.E. Siegman: `Lasers', University Science Books (1986)
- Bond, Brown, Freise, Strain: `Interferometer techniques for gravitational-wave detection', Living Reviews in Relativity,19, 3 (2017) arXiv:0909.3661
- Bayer-Helms: `Coupling coefficients of an incident wave and the modes of spherical optical resonator in the case of mismatching and misalignment', Appl. Opt., 23, 1369-1380 (1984)

Alignment in the mode picture

Small mis-alignment causes coupling from fundamental mode (u_{00}) into first order mode (u_{01} or u_{10})

NIVERSITYOF

BIRMINGHAM

Minimal mirror size

