ALIGNMENT NOISE COUPLING WITH LARGE BEAMS

a brief introduction

Andreas Freise LIGO DCC G1702391

Aim

- It has been said that large beams will be a problem because the `alignment noise scales with the beam size to the power of six'.
- In this presentation I want to briefly review this statement and what it means.

Why large beam sizes?

A. Freise

Long arms make large beams

- Laser beams cannot be fully collimated. They are diverging due to diffraction
- For a given interferometer arm, there is a minimal beam width

$$
w_{\min }=\sqrt{L \lambda / \pi}
$$

- I.e. for $\mathrm{L}=10 \mathrm{~km}$, lambda $=1.5 \mathrm{um}, \mathrm{w}_{\text {min }} \approx 7 \mathrm{~cm}$

Larger beams reduce thermal noise

- Several proposals for future interferometers have suggested larger beams (or alternative beam shapes) to reduce thermal noise
- Coating thermal noise scales as $\sim 1 / w$
c) Beams are likely to get larger in future interferometric detectors

Alignment coupling

Finesse model, arm cavity

Alignment to GW channel

- Mis-alignment at 'm2' is a sum of a static DC misalignment and an alignment oscillation at the GW signal frequency $f_{G W}$.
- Generares modes $\mathrm{a}_{01,0}=\mathrm{u}_{01}(f=0 \mathrm{~Hz})$ and $\mathrm{a}_{01, \mathrm{f}}=\mathrm{u}_{01}\left(f=f_{G W}\right)$
- Photo diode signal detects signal ~ $\mathrm{a}_{01,0} \mathrm{a}^{{ }_{01, f}}$

Finesse model: sideband amplitudes

Why ~ w ${ }^{3}$?

a) coupling coefficients

Coupling of higher-order modes

- Small mis-alignment causes coupling from fundamental mode (u_{00}) into first order mode (u_{01} or u_{10})
- Coupling coefficients k defined via:

$$
u_{n m}\left(q_{1}\right) \exp (\mathrm{i}(\omega t-k z))=\sum_{n^{\prime}, m^{\prime}} k_{n, m, n^{\prime}, m^{\prime}} u_{n^{\prime} m^{\prime}}\left(q_{2}\right) \exp \left(\mathrm{i}\left(\omega t-k z^{\prime}\right)\right)
$$

Alignment coupling coefficient

- For $\mathrm{u}_{00}->\mathrm{u}_{01}$ (small angle γ):

$$
\begin{aligned}
|k| & =\left|\frac{\left(z-\mathrm{i} z_{R}\right) \sin \gamma}{w_{0}}\right| \\
|k| & =\frac{z_{r}}{w_{0}^{2}} w|\sin \gamma| \\
& =\frac{\pi}{\lambda} w|\sin \gamma| \\
& \sim w
\end{aligned}
$$

Why ~ w ${ }^{3}$?

b) resonant enhancement/
 suppression

Compute cavity fields

Set of linear equations, for example:

$$
\frac{a_{2}}{a_{0}}=\frac{-t_{1} t_{2} \exp (-\mathrm{i} k L)}{1-r_{1} r_{2} \exp (-\mathrm{i} 2 k L)}
$$

Resonance factor

$$
\begin{aligned}
& d=\frac{1}{1-r_{1} r_{2} \exp \left(-\mathrm{i} 2 k D+(1+n+m) \Psi_{r t}\right)} \\
& |d|=\sqrt{\frac{1}{1-R_{1} R_{2}-2 r_{1} r_{2} \cos \left(-2 k D+(1+n+m) \Psi_{r t}\right)}} \\
& |d|_{\mathrm{HG} 10}=\sqrt{\frac{1}{1-R_{1} R_{2}-2 r_{1} r_{2} \cos \left(\Psi_{r t}\right)}} \quad \text { (now assuming high finesse) } \\
& |d|_{\mathrm{HG} 10} \approx \sqrt{\frac{\pi}{2 L \lambda} w^{4}} \sim w^{2} \quad \quad \text { (for given } \mathrm{L} \text { and } \lambda \text {) }
\end{aligned}
$$

Summary

- Coupling into u_{01} mode increased linearly with beam size
- Larger beams cause the higher-order modes to be suppressed less, field amplitude rises with beam size squared
- The above is true for high finesse, medium frequency range, and fixed L and λ. In general the behaviour is complex but this example is useful as an order of magnitude estimate.

Conclusion

- Large beams are likely/useful/necessary in future detectors
- Large beam increase the coupling of alignment noise into the gravitational wave channel, in this example as $\sim w^{6}$
- Combination of:
- stronger coupling into a u_{01} mode (\sim w per field), means also we get stronger alignment signals
- and lower suppression of the u_{01} mode in the cavity ($\sim w^{2}$ per field), could be fixed with higher finesse
- Work in progress!

References

- A.E. Siegman: `Lasers', University Science Books (1986)
- Bond, Brown, Freise, Strain: `Interferometer techniques for gravitational-wave detection', Living Reviews in Relativity,19, 3 (2017) arXiv:0909.3661
- Bayer-Helms: `Coupling coefficients of an incident wave and the modes of spherical optical resonator in the case of mismatching and misalignment', Appl. Opt., 23, 1369-1380 (1984)

Eigennoces

Cavity Eigenmodes

$$
E(t, x, y, z)=\sum_{j} \sum_{n, m} a_{j n m} u_{n m}(x, y, z) \exp \left(\mathrm{i}\left(\omega_{j} t-k_{j} z\right)\right)
$$

complex amplitude factor
spatial properties
propagation

Hermite-Gauss modes

$$
\begin{aligned}
u_{\mathrm{nm}}(x, y, z)= & \left(2^{n+m-1} n!m!\pi\right)^{-1 / 2} \frac{1}{w(z)} \exp (\mathrm{i}(n+m+1) \Psi(z)) \\
& \times \quad H_{n}\left(\frac{\sqrt{ } 2 x}{w(z)}\right) H_{m}\left(\frac{\sqrt{ } 2 y}{w(z)}\right) \exp \left(-\mathrm{i} \frac{k\left(x^{2}+y^{2}\right)}{2 R_{C}(z)}-\frac{x^{2}+y^{2}}{w^{2}(z)}\right)
\end{aligned}
$$

Alignment in the mode picture

Small mis-alignment causes coupling from fundamental mode (u_{00}) into first order mode (u_{01} or u_{10})

Minimal mirror size

