Modified GW propagation

Belgacem, Dirian, Foffa, MM PRD 2018, 1712.08108 and PRD 2018, 1805.08731

in GR:
$$\tilde{h}_A^{\prime\prime} + 2\mathcal{H}\tilde{h}_A^{\prime} + k^2\tilde{h}_A = 0$$

writing
$$\tilde{h}_A(\eta, \mathbf{k}) = \frac{1}{a(\eta)} \tilde{\chi}_A(\eta, \mathbf{k})$$

we get
$$\tilde{\chi}_A^{\prime\prime} + (k^2 - a^{\prime\prime}/a)\,\tilde{\chi}_A = 0$$

inside the horizon
$$a''/a \ll k^2$$
, so $\tilde{\chi}_A'' + k^2 \tilde{\chi}_A = 0$

- 1. GWs propagate at the speed of light
- 2. $h_A \propto 1/a$ For coalescing binaries this gives $h_A \propto 1/d_L(z)$

in several modified gravity models (eg the RR nonlocal model):

$$\tilde{h}_A^{"} + 2\mathcal{H}[1 - \delta(\eta)]\tilde{h}_A^{\prime} + k^2\tilde{h}_A = 0$$

$$\tilde{h}_A(\eta, \mathbf{k}) = \frac{1}{\tilde{a}(\eta)} \tilde{\chi}_A(\eta, \mathbf{k})$$
 $\frac{\tilde{a}'}{\tilde{a}} = \mathcal{H}[1 - \delta(\eta)]$

$$\tilde{\chi}_A^{"} + (k^2 - \tilde{a}^{"}/\tilde{a})\tilde{\chi}_A = 0$$

and again inside the horizon $\tilde{a}''/\tilde{a} \ll k^2$

- 1. $c_{GW} = c$ ok with GW170817
- 2. $\tilde{h}_A \propto 1/\tilde{a}$

the "GW luminosity distance" is different from the standard (electromagnetic) luminosity distance!

in terms of $\delta(z)$:

Deffayet and Menou 2007 Saltas et al 2014, Lombriser and Taylor 2016, Nishizawa 2017, Belgacem et al 2017, 2018

$$d_L^{\text{gw}}(z) = d_L^{\text{em}}(z) \exp\left\{-\int_0^z \frac{dz'}{1+z'} \,\delta(z')\right\}$$

prediction of the RR model:

at ET and LISA this propagation effect dominates over that from the dark energy EoS!

recall that

$$d_L(z) = \frac{1+z}{H_0} \int_0^z \, \frac{d\tilde{z}}{\sqrt{\Omega_M (1+\tilde{z})^3 + \rho_{\rm DE}(\tilde{z})/\rho_0}} \qquad \text{(neglect radiation for standard sirens)}$$

relative difference of e.m. luminosity distance RR-LCDM for the same values of $\Omega_{\rm M}$ and H_0

relative difference with the respective best-fit parameters

relative difference of gw luminosity distance

a general parametrization of modified GW propagation

Belgacem, Dirian, Foffa, MM PRD 2018, 1805.08731

$$\frac{d_L^{\text{gw}}(z)}{d_L^{\text{em}}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1+z)^n}$$

for the minimal RR model:

$$\Xi_0 = 0.970, \quad n = 5/2$$

However, the parametrization looks very natural and convenient in general!

parametrizing the DE sector:

- background: (w₀,w_a)
- scalar sector: (Σ, μ) tensor sector: (Ξ_0, n)

for standard sirens, the most important parameters are w_0 , Ξ_0

The observation of GW170817 already gives a limit modified GW propagation

Belgacem, Dirian, Foffa, MM PRD 2018, 1805.08731

at low z:
$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = e^{-\int_0^z \frac{dz'}{1+z'} \, \delta(z')} \simeq 1 - z \delta(0)$$

• comparing directly d^{em} for the host galaxy (obtained from surface brightness fluctuations): $\delta(0) = -7.8^{+9.7}_{-18.4}$

• comparing the values of H₀ inferred from GW170817 with the Riess et al. value from standard candles:

$$\delta(0) = -5.1_{-11}^{+20}$$

Forecasts for the Einsten Telescope

ET could detect $\sim 10^5$ - 10^6 BNS/yr up to large z assume $\sim 10^3$ em counterparts

(more detailed modelization of the GRB detection and of a ET+CE+CE network in progress, with T.Regimbau and E. Howell)

$$\Delta w_0 = 3.2\%, \quad \Delta \Xi_0 = 0.8\%$$

forecasts for LISA under completion (within the LISA cosmology WG)

• Example: RR model testable at ET with O(100) standard sirens!

standard sirens at 0.07<z<2

The contribution basically comes from O(40) sources at 0.07 < z < 0.7

without modified GW propagation we would need O(1000) sources!

Take-away message:

modified GW propagation can become a major science driver for 3G detectors

• it is specific to GW observations

(while the accuracy of GW observations on w_{DE} will not be terribly competitive even with present Planck/DES observations)

• Ξ_0 can be measured with better accuracy than w_0

significant test of dark energy and modified gravity