

0.000

-

A Time Domain Simulator for Einstein Telescope

*Ayatri Singha, Stefan Hild *a.singha.1@research.gla.ac.uk

http://www.et-gw.eu

University of Glasgow

Motivation

- Why to develop a time domain simulator for ET?
- Might be useful in various aspects:
 - Can test data analysis techniques (see ET Mock data challenge) …
 - Evaluate what influence have calibration errors between LF and HF?
 - How do calibration errors influence null stream?
 - Provide input some detailed design decisions, i.e. how close to put ETMs of one detector to the ITMs of another (is there any optimum in terms coherent or non-coherent Newtonian noise coupling?)
 - Any questions you have that could be answered with time domain simulator?

Contents

- Creation of coloured noise data streams
- Combining the LF and HF data streams into single data stream, i.e construction of optimal filter.
- Simulation for generating null stream.
- Effect of calibration error on null stream time.
- Future steps

STEP 1: Colour noise generation

Singha, Hild

University of Glasgow

ET - telecon, May 2019

University of Glasgow Power spectral density evaluated from generated coloured noise time series

ET-LF

University of Glasgow Combining data streams in frequency domain

$$n_{Com}(f) = \frac{n_{LF}(f) * n_{HF}(f)}{\sqrt{n_{LF}^2(f) + n_{HF}^2(f)}}$$

-

_

- Data can be combined in frequency domain.
- The overall sensitivity will be minimised for both low and high frequency.

How to combine data in time series?

- It cannot be combined directly as in frequency domain.
- Need to construct filter by which one can combine the time series data linearly.
- Need to choose optimal filter.

ET EINSTEIN TELESCOPE

Flow chart for combining two time series data from ET low and high frequency arm.

University of Glasgow

STEP 2: Time domain combination into a single data stream High pass and low pass fit function

STEP 3: Reshaping the noise time series by low and high pass filter

Time series data from ET-HF and ET-LF

STEP 4: Combining two noise time series

Power spectral density of time series data after passing through high and low pass filter

Power spectral density has been evaluated by Welch method (considering 7 seconds of samples with overlapping of 50%).

Flowchart to fix optimal choice for the low and high pass filter

Optimal choice for the low and high pass filter

 $\delta f = 3.6 \text{ Hz}$ is our optimal choice for this filter

- Gravitational waveform has been generated from following parameters using TaylorF2 model-
- Mass1 = 1.4
- Mass2 = 1.4,
- distance = 5000,
- delta_f=1.0/1000,
- lower cut off frequency = 2 Hz

$$SNR(\rho) = 4 \int_{f_{low}}^{f_{upper}} \frac{h_{com}(f)^2 \, df}{S_n(f)}$$

Ratio of Reconstructed to injected

Demonstration the effect on Calibration lines for using Optimal Filters

Equi-spaced calibration lines are injected between frequency range 25 to 45 Hz

Null Stream Analysis

Data strain at each arm can be expressed as $x^{A}(t) = n^{A}(t) + d^{A}_{ij}h^{ij}(t)$

- Null stream can be written as

$$X_{null}(t) = \sum_{A=1}^{3} x^{A}(t) = \sum_{A=1}^{3} n^{A}(t) + \sum_{A=1}^{3} d_{ij}^{A} h^{ij}(t)$$
$$= \sum_{A=1}^{3} n^{A}(t)$$

Null steam using mock data generation

Singha, Hild

of Glasgow Null stream using mock data generation

Null stream = sum of all the Waveforms and noise generated for three arms of ET.

As we know , the sum of three waveforms = 0, hence we are left with pure noise.

Jniversity

Effect of amplitude calibration error on null stream

- The fraction of signal present in null stream due to calibration error

 $\delta h(t) = NS(t) - n^{1}(t) + n^{2}(t) + n^{3}(t)$

The background blue curve is representing the gravitational waveform including 4% amplitude calibration error. As a result of this calibration error we are getting orange plot, which is simply sum of the tree waveforms(ideally should be zero)

Effect of amplitude calibration error on null stream

- The average fractional energy that is being present on null stream can be computed by

$$\%(\frac{\delta h}{h}) = \frac{1}{3}\left(\frac{\sqrt{\sum \delta h^2(t)}}{\sqrt{\sum h_1^2(t)}} + \frac{\sqrt{\sum \delta h^2(t)}}{\sqrt{\sum h_2^2(t)}} + \frac{\sqrt{\sum \delta h^2(t)}}{\sqrt{\sum h_3^2(t)}}\right)$$

$$\%(\frac{\delta h}{h})\approx Calibration\, Error$$

Summary:

- Developed framework for a basic ET Time Domain simulator.
- Checked that it delivers required noise characteristics
- Developed combining filters to create a single data stream per xylophone detector.
- Showed that nullstream can only be as good as the calibration of individual detectors.

Future Steps:

- Next simulate realistic movement of all mirrors caused by newtonian noise and explore coherence and subtraction effects.
- Happy to hear any ideas **you** have for other applications or questions that could be looked into with time domain simulator.

Demonstration the effect on Calibration lines for using Optimal Filters

Equi-spaced calibration lines are injected between frequency range 5 to 20 Hz

Demonstration the effect on Calibration lines for using Optimal Filters

Equi-spaced calibration lines are injected between frequency range 100 to 1000Hz

Ratio pf_2 the PSD of callibration lines after and before applying filter

Demonstration the effect on Calibration lines for using **Optimal Filters**

Calibration lines are injected at 31.56 Hz

Ratio of callibration lines after and before applying filter

Singha, Hild

Power spectral density of time series data after passing through high and low pass filter

