

Silicon-based optical mirror coatings for ultra-high precision metrology and sensing (originally: Silicon-based optical coatings with a 12 times thermal noise reduction) dcc: P1800004

 J. Steinlechner,^{1,2} I. W. Martin,^{1,*} A. S. Bell,¹ J. Hough,¹ M. Fletcher,¹ P. G. Murray,¹ R. Robie,¹ S. Rowan,¹ and R. Schnabel²
 ¹SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland ²Institut für Laserphysik and Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Dated: January 29, 2018)

- Known for low cryogenic mechanical loss
 - Measurements of IBS aSi suggest a factor of 40 or more lower loss than tantala at 20 K

P. G. Murray, I. W. Martin, M. R. Abernathy, K. Craig, J. Hough, T. Pershing, S. Penn, R. Robie, S. Rowan, Phys. Rev. D **92**, 062001 (2015)

- Even lower loss demonstrated (e.g. elevated temperature deposition work)
 X. Liu, D. R. Queen, T. H. Metcalf, J. E. Karel, F. Hellman Phys. Rev. Lett. **113** 025503 (2014)
- High index (n ~ 3.5 4) thinner films and fewer bilayers: direct thermal noise reduction
- BUT: optical absorption typically significantly higher than required

- Here we investigate
 - Deposition method ion-plating (dep. temp. ~250°C) http://www.tafelmaier.de/index.php?page=beschichtung&Ing=en
 - Absorption
 - Effect of post-deposition heat-treatment on absorption
 - \blacksquare Absorption at 1.55 and at 2 μm
 - Effect of cooling
 - Mechanical loss

Thermal noise performance

Absorption versus heat-treatment at 1.55 and 2 μm

- Measured on: single layer, 1 μ m thick at 1.55 μ m and 2 μ m
- Scale to estimate the absorption in an HR aSi/SiO2 stack
 (7 bilayers, assuming negligible absorption in the SiO₂ layers)
- 85%/89% absorption reduction at 1.55/2 μm following optimum heat-treatment
- Minimum absorption is x7.2 lower at 2 μm than at 1.55 μm

Absorption versus temperature at 1.55 and 2 μm

- Cooling to 47K: approximately 70% reduction in absorption for heattreated and as-deposited coatings, at both wavelengths
- 2 μm measurements corrected for substrate absorption using uncoated measurements

Absorption

- Heat-treatment: x 2.3 reduction
- Moving from 1.55 to 2 μm: x7.2 reduction
- Cooling (to 47 K, here): x 3.3 reduction
- Total reduction compared to as-deposited, room temperature at 1550nm: x55

Mechanical loss

aSi loss

- **290K**, as deposited: 1 x 10⁻⁴
- 290K, heat treated: 2 x 10⁻⁵
- 20K, as deposited: 2 x 10⁻⁵
- 20K, heat treated: ???

- Silica loss (7.8E-4 @ 20K, dominates thermal noise of aSi/SiO₂ HR coating
- Use silicon nitride as low-index (n=2.17) partner layer for aSi
 - Low cryogenic loss in literature (plus work of Shiuh Chao et al)
 - We measured absorption at 2 μ m, finding a k = 4.3E-6, used to predict absorption of HR coatings.

Thermal noise

A: 17 bilayers	B: 7 bilayers	C: 18 bilayers	D: 11 bilayers
SiO ₂ (blue, 258 nm)	SiO ₂ (blue, 333 nm)	SiO ₂ (blue, 258 nm)	aSi (pink, 143 nm)
& Ti:Ta ₂ O ₅ (green, 189 nm)	& aSi (pink, 143 nm)	& SiN (yellow, 179 nm)	& SiN (yellow, 230 nm)
absorption 1.55 µm:	absorption at 2 μm:	absorption at 2 μm:	absorptionvat 2 µm:
1.7 ppm; TN set to 100 %	20 ppm; TN: 60 %	14 ppm; TN: 96 %	27 ppm; TN: 8 %

TABLE I. Refractive index, n, and mechanical loss, ϕ , of the materials discussed.

Temper-			loss $\phi \times 10^{-4}$	
ature	SiO_2	${\rm Ti:}{\rm Ta}_2{\rm O}_5$	aSi	SiN
$290\mathrm{K}$	0.4 [15]	2.4 [15]	1.0 (IBS, ATF) [23] 0.2 (IP) 0.17 (IBS, UWS)	0.8 [36]
$120\mathrm{K}$	1.7 [16]	3.3 [35]	0.8 (IBS, ATF) [23]	0.2 [36]
$20\mathrm{K}$	7.8 [16]	8.6 [35]	0.2 (IBS, ATF) [23] < 0.2 (IP)	0.1 [36]
n	1.5	2.05	3.65	2.17 [37]

$$S_x(f,T) \approx \frac{2k_BT}{\pi^2 f} \frac{d}{w^2 Y} \phi \left(\frac{Y'}{Y} + \frac{Y}{Y'}\right)$$

Thermal noise

B: 7 bilayers SiO ₂ (blue, 333 nm) & aSi (pink, 143 nm) absorption at 2 μm:	C: 18 bilayers SiO ₂ (blue, 258 nm) & SiN (yellow, 179 nm) absorption at 2 μm:	D: 11 bilayers aSi (pink, 143 nm) & SiN (yellow, 230 nm) absorptionvat 2 µm: 27 ppm; TN: 8 %
	SiO ₂ (blue, 333 nm) & aSi (pink, 143 nm)	SiO2 (blue, 333 nm)SiO2 (blue, 258 nm)& aSi (pink, 143 nm)& SiN (yellow, 179 nm)absorption at 2 μ m:absorption at 2 μ m:

Coating	ETM coating TN (120K/20K)	Absorption (120K/20K)
17 bilayers SiO ₂ / Ti:Ta ₂ O ₅ (1.55 μ m)*	1/1	<1ppm/<1ppm
7 bilayers SiO ₂ /aSi (2μm)	0.54/0.60	67ppm/20ppm
18 bilayers SiO ₂ /SiN (2µm)	0.87/0.96	47ppm/14ppm
11 bilayers SiN/aSi (2µm)	0.19/0.08	90ppm/27ppm

- SiO₂/Ti:Ta₂O₅ at 120K has ~1.36× higher TN than at 20 K
- $SiO_2/Ti:Ta_2O_5$ at 120K has ~0.84× actual aLIGO ETM TN

- IBS, mechanical loss of 0.17 x 10⁻⁴ at RT
- Absorption: ~20ppm for aSi/SiO₂ HR coating at 1550nm and RT

Coating	ETM coating TN (120K/20K)	Absorption (120K/20K)
17 bilayers SiO_2 / Ti:Ta ₂ O ₅ (1.55µm)	1/1	<1ppm/<1ppm
7 bilayers SiO ₂ /aSi (1.55µm)	0.48/0.60	20ppm/20ppm
18 bilayers SiO ₂ /SiN (1.55µm)	0.77/0.96	36ppm/36ppm
11 bilayers SiN/aSi (1.55µm)	0.17/0.08	33ppm /33ppm

- Here, using room temperature 1550nm absorption
- Scope for significant further reduction in multi-layer absorption, based on results with other types of aSi
 - Absorption at 2µm?
 - Absorption and loss at low temperature?

¹Birney, Reid, Vine, McFoy, Angelova, Gibson et al: see e.g. https://dcc.ligo.org/LIGO-G1700870

What is possible using multi-material coatings?

120K

+ $4x \operatorname{SiO}_2/\operatorname{Ti:Ta}_2\operatorname{O}_5$

11 bilayers SiN/aSi

+ 5x SiO₂/Ti:Ta₂O₅

0.53 / 0.61

•	TN compared to SiO ₂ /Ti:Ta ₂ O ₅ 1.55µm(UWS)/2µm(IP)	Absorption 1. <mark>55µm(UWS)</mark> /2µm(IP)
11 bilayers SiN/aSi	0.17 / 0.19	33ppm / 90ppm
11 bilayers SiN/aSi + 1x SiO ₂ / Ti:Ta ₂ O ₅	0.25 / 0.28	16.5ppm / 45ppm
11 bilayers SiN/aSi + 2x SiO ₂ / Ti:Ta ₂ O ₅	0.33 / 0.38	8.3ppm / 22.5ppm
11 bilayers SiN/aSi + 3x SiO ₂ / Ti:Ta ₂ O ₅	0.41 / 0.46	4.1ppm / 11.3ppm
11 bilayers SiN/aSi	0.47 / 0.53	2ppm / 5.7ppm

1ppm / 2.8ppm

- We compared the HR absorption predicted from single-layer measurements with absorption measured for an HR stack of RLVIP aSi/SiO₂
 - Single layer starts with a higher absorption after deposition than HR stack (possible reason: longer deposition time for HR stack = longer heating during deposition)
 - Measured HR stack reduces absorption by 57% (compared to 85% for the single layer)
 - HR stack reaches minimum absorption at 450°C (compared to 500°C for single layer)
 - Resulting absorption for HR stack about 20% higher than for an HR coating calculated from single layer measurements
- Could there be interface effects?
- Longer deposition time for HR stack: Changing absorption characteristics? Lower absorption as-deposited, less responsive to postdeposition heat-treatment?