What we learned from the silicon absorption measurement at LMA

J. Degallaix, D. Forest C. Carcy, L. Pinard and R. Flaminio

4th Einstein Telescope Symposium

4-5 December 2012

- The mirage effect and how to measure absorption
- Measurement and theory at room temperature
- Some remarks for E.T.

Why this technique ?

Long experience of this technique at LMA:

- Excellent sensibility (down to 0.3 ppm on silica)
- Measure surface absorption or volume absorption
- Can derive 3D maps

Required a reference in absorption

Example of measurement

On an absorption reference made of fused silica:

(a straight line means the absorption is constant)

Example of measurement

On a silicon sample:

Absorption proportional to the square of the pump power?

The simple absorption theory

Free Carrier Absorption (FCA): light absorbed by free carrier

Solid theory

Theory there but empirical relation¹

¹Electrooptical effects in silicon, Soref and Bennett, IEEE Journal of Quantum Electronics, Vol 23, p123 (1987)

Non linearities in silicon ?	phys. stat. sol. (a) 203, No. 5, R38–R40 (2006) / DOI 10.1002/pssa.200622062 solution of the second state
July 15, 2007 / Vol. 32, No. 14 / OPTICS LETTERS Impact of two-photon absorption on self-phase modulation in silicon waveguides Lianghong Yin and Govind P. Agrawal Institute of Optics, University of Rochester, Rochester, New York 14627, USA	www.pss-rapid.com www.pss-rapid.com 2031 Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers Varun Raghunathan, Ramesh Shori, Oscar M. Stafsudd, and Bahram Jalali Influence of nonlinear absorption on Raman amplification in Silicon waveguides R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali
Optical dispersion, two-photon absorption and self-phase silicon waveguides at 1.5µm wavelength H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts et al. Citation: Appl. Phys. Lett. 80, 416 (2002); doi: 10.1063/1.1435801 Role of free carriers from two-photon absorption in Raman amplificat silicon-on-insulator waveguides	e modulation in Nonlinear optical phenomena in silicon waveguides: Modeling and applications Q. Lin, ^{1,*} Oskar J. Painter, ¹ and Govind P. Agrawal ² tion in nature photonics DIBLISHED ONLINE 30 JULY 2010 [DOL: 10.1038/NPHOTON.2010.08
Citation: Appl. Phys. Lett. 84, 2745 (2004); doi: 10.1063/1.1702133 ISSN 1054-660X, Laser Physics, 2011, Vol. 21, No. 1, pp. 137–147. © Pleiades Publishing, Ltd., 2011. Original Text © Astro, Ltd., 2011.	DF LASER MATTER
Nonlinear Change in Refractive Index and Transmission Coefficient of Silicon at Long-Pulse, mJ-Range, 1.54-μm Excitation APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 18	fficient n ¹ JOURNAL OF PUBLISHING JOURNAL OF PH I. Phys. D: Appl. Phys. 40 (2007) R249–R271 doi:10.14 TOPICAL REVIEW Ultrafast nonlinear all-optical processilicon-on-insulator waveguides
Third-order nonlinearities in silicon at telecom wavelengths M. Dinu, ^{a)} F. Quochi, and H. Garcia Bell Laboratories, Lucent Technologies, 101 Crawfords Corner Road, Holmdel, New Jersey 07733	R Dekker ¹ , N Usechak ² , M Först ³ and A Driessen ¹

The steady state (simplified) theory I

Two Photon Absorption (TPA):

 $\alpha_{TPA} = 3 \left(\frac{P_{laser}}{10W}\right)^2 \text{ppm/cm}$

Two photons are absorbed to create a electron-hole pair:

I: Laser intensity 70 MW/m² for 10W

The steady state (simplified) theory II

When 2 photons are absorbed, creation of a electron-hole pair N_e and N_h = density of free electron and hole.

Evolution of free carrier density:

 $\frac{dN_{e,h}}{dt} = \frac{\beta}{2h\nu}I^2 - \frac{N_{e,h}}{\tau}$

At the equilibrium:

$$N_{e,h} = \frac{\beta\tau}{2h\nu}I^2$$

 τ : free carrier lifetime ~ 1 ms

 $N_{e}, N_{h} \sim 1.6 \times 10^{14} / cm^{3}$

And the absorption is given by: $\alpha_{FCA} = (8.5N_e + 6.0N_h) \times 10^{-18} \text{ ppm/cm} \quad \alpha_{\text{TPA}} \sim 2300 \text{ ppm/cm}$

Absorption proportional to the square of the laser power!

Other non linear effect

We are not directly measuring the absorption but the gradient of refractive index

Other sources of deviation:

- Free Carrier Dispersion (FCD): the refractive index depends of the free carrier density:
 - $\Delta n = -(8.0N_e + 5.4N_h) \times 10^{-22}$

• <u>Kerr effect:</u> refractive index directly proportional to the laser power $\Delta n = C_{Kerr} P_{laser} \qquad \qquad C_{Kerr} = 4 \times 10^{-14} \text{ cm}^2/\text{W}$

(negligible effect, except at very low temperature)

Summary for silica and sapphire

Summary for silicon

Evolution of the free carrier density

More complicated than the previous calculation because of the free carrier diffusion (electrons do not stay where they are created)

$$\frac{\partial N_{e,h}(r,t)}{\partial t} = D_{e,h} \nabla^2 N_{e,h}(r,t) - \frac{N_{e,h}(r,t)}{\tau} + A(t) \exp\left(-2\frac{r^2}{w^2}\right)$$
Evolution Diffusion Recombination Source term term term (TPA)
$$D_e = 36 \text{ cm}^2 / \text{ s} \qquad D_h = 12 \text{ cm}^2 / \text{ s}$$

Model solved numerically for simple case: harmonic excitation or step function

Essential to derive the absorption in silicon

Evolution of the free carrier density

Steady state concentration With Gaussian illumination

Evolution of the free carrier density

More complicated situation:

Absorption depends on space and time!

Back to the measurement

Can we see the absorption changing ? Record directly the raw deviation illuminated by a square wave

A closer look to the response

Change of the refractive index in response to the change in free carrier density(FCD). Proportional to the gradient of free carrier Thermal response from the change of absorption. Proportional to the amount of free carrier

Why did the simulation say ?

Response of the deviation to a step function Evolution over 0.2 ms

Comparison of 2 different samples

higher resistivity sample shows higher deviation!

High resistivity \rightarrow high purity \rightarrow long free carrier lifetime High density of free carrier (they accumulate) \rightarrow higher absorption ₂₅

And with calibrated data

- Even at low power dominated by non linear effect (absorption power dependent)
- Absorption less than 10 ppm/cm
- At high power, absorption 6 times higher than expected from the theory \rightarrow checking the reference in absorption and the theory.

What about ET ?

Main tests done are done at room temperature with a small beam.

For ET, large beam (9 cm) and low power (30W). Very low laser intensity. Non linear effects become negligible. (example: two photon absorption =10⁻⁴ ppm/cm)

What about the (intensity independent) free carrier concentration from the dopant ?

Free carrier freeze out ?

No ionised dopant (so no free carrier) or not ?

Even at low temperature, all the dopant may be ionised

Plot from: Cryogenic operation of silicon power devices, Ranbir Singh, B. Jayant Baliga, Kluwer Academic Publishers (1998)

What substrate absorption is desirable ?

From ET design study: $P_{PRC} = 65 \text{ W}$ $P_{arm} = 18 \text{ kW}$ Thickness mirror = 50 cm

If we suppose the current lowest coating absorption: 0.3 ppm, we get 5 mW absorbed in the coating. To have the same amount absorbed in the substrate: absorption substrate ~2ppm/cm (if all dopand ionized, resisitivity~ 30 kOhm.cm)

Comparison with Kagra¹: 1 W absorbed by the coating and substrate 200 mW due to the radiation from hotter part

¹ Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector, K. Somiya, Classical **29** and Quantum Gravity, Vol 29, p124007 (2012)

Improved cryogenic setup

- Some evidence of diffused light reaching the temperature sensor
- Pump power at 940 nm leaking from the 1550 nm laser

Improved cryogenic setup

- Some evidence of diffused light reaching the temperature sensor
- Pump power at 940 nm leaking from the 1550 nm laser

Conclusion

At room temperature

- Non linear effect clearly visible even at low power
- Effect qualitatively well understood
- Lowest absorption measured: <10 ppm/cm but checking the calibration

With ET parameters

- Non linear effects not an issue
- Would be good to derive the maximum acceptable absorption
- Currently improving our cryogenic setup