global constants %% List of Constants for suspension thermal noise & seismic noise % defines: frequency % variables: mass, length of fiber, diameter of each fiber section % conditions: temperature % physical constants (g, hbar, etc) % silica constants (Y, alpha, etc) % interferometer parameters %% define frequency points % N=100000; fmin = 1; fmax = 100; % frequency = linspace(fmin,fmax,N); frequency = logspace(-1,3,10000); %% Variables %%%%% suspension mass %%%%% %val=0 is aLIGO %val=0; val=1; M4 = 80; % mass of mirror if M4 == 40 total_mass = 124; % total mass of suspension % M1 = 22; % for m4=40kg % M2 = 22; % for m4=40kg % M3 = 40; % for m4=40kg M1 = 38.96; % for m4=40kg M2 = 26.72; % for m4=40kg M3 = 18.32; % for m4=40kg elseif M4 == 60 total_mass = 186; %total mass of suspension M1 = 58.44; % for m4=80kg M2 = 40.08; % for m4=80kg M3 = 27.49; % for m4=80kg elseif M4 == 80 total_mass = 248; %total mass of suspension M1 = 64.7693; % for m4=80kg M2 = 47.8537; % for m4=80kg M3 = 55.377; % for m4=80kg % elseif M4 == 80 % total_mass = 22+22+40+80; %total mass of suspension % M1 = 22; % for m4=80kg % M2 = 22; % for m4=80kg % M3 = 40; % for m4=80kg elseif M4 == 100 total_mass = 310; M1 = 97.39; % for m4=160kg m1 M2 = 66.8; % for m4=160kg m2 M3 = 45.81; % for m4=160kg m3 elseif M4 == 120 total_mass = 372; %total mass of suspension M1 = 116.87; % for m4=80kg M2 = 80.15; % for m4=80kg M3 = 54.97; % for m4=80kg elseif M4 == 140 total_mass = 390; M1 = 112.83; % for m4=160kg m1 M2 = 80.19; % for m4=160kg m2 M3 = 56.99; % for m4=160kg m3 elseif M4 == 160 total_mass = 390; M1 = 100.21; % for m4=160kg m1 M2 = 74.46; % for m4=160kg m2 M3 = 55.33; % for m4=160kg m3 elseif M4 == 180 total_mass = 390; %total mass of suspension M1 = 88.61; % for m4=80kg M2 = 68.48; % for m4=80kg M3 = 52.92; % for m4=80kg elseif M4 == 200 total_mass = 390; M1 = 77.83; % for m4=160kg m1 M2 = 62.3; % for m4=160kg m2 M3 = 49.87; % for m4=160kg m3 end %%%%% suspension length %%%%% %% aLIGO values (mass, length) if val==0 M4 = 39.6310; %mass of mirror M1 = 21.9990; % for m4=40kg M2 = 21.5260; % for m4=40k M3 = 39.6330; % for m4=40kg % M1=22; % M2=22; % M3=40; % M4=40; total_mass = M4+M1+M2+M3; %total mass of suspension % F_l = 0.5820; %length of last stage fibre % L_1 = 0.4152; %length of first stage % L_2 = 0.2754; %length of second stage % L_3 = 0.3287; % L_1=0.4160 ; % L_2=0.2770 ; % L_3=0.3410 ; % F_l=0.6020 ; L_1=0.42 ; L_2=0.28 ; L_3=0.33 ; F_l=0.5820 ; total_length = F_l+L_1+L_2+L_3; %total l %total_length = 2.14; %total l L4_rad1 = 410e-6; %radius of thick section of fibre (to cancel thermoelastic) L4_rad2 = 220e-6; %radius of thin section of fibre (645MPa) %L4_rad2 = 142.19e-6; %1.85GPa else % total_length = 1.60; %total l % L_1=0.4160 ; % L_2=0.2770 ; % L_3=0.3410 ; % F_l=0.6020 ; total_length = 2.14; F_l = 0.6; %length of last stage fibre L_1 = (total_length-F_l)./3; %length of first stage L_2 = L_1; %length of second stage L_3 = L_1; %length of third stage end %aLIGO suspension length % F_l = 0.602; %length of last stage fibre % L_1 = 0.416; %length of first stage % L_2 = 0.277; %length of second stage % L_3 = 0.341; % total_length = F_l+L_1+L_2+L_3; %total l %%%%% fiber radius (last stage) %%%%% if M4 == 40 L4_rad1 = 410e-6; %radius of thick section of fibre (to cancel thermoelastic) L4_rad2 = 201.08e-6; %radius of thin section of fibre (770MPa) L4_rad2 = 142.19e-6; %radius of thin section of fibre (1.54GPa) elseif M4 == 60 L4_rad1 = 504e-6; L4_rad2 = 247e-6; %770MPa L4_rad2 = 174.14e-6; %1.54GPa elseif M4 == 80 L4_rad1 = 581e-6; L4_rad2 = 285e-6; %770MPa %L4_rad2 = 201.08e-6; %1.54GPa elseif M4 == 100 L4_rad1 = 650e-6; L4_rad2 = 318e-6; %770MPa L4_rad2 = 224.82e-6; %1.54GPa elseif M4 == 120 L4_rad1 = 712e-6; L4_rad2 = 349e-6; %770MPa L4_rad2 = 246.28e-6; %1.54GPa elseif M4 == 140 L4_rad1 = 769e-6; L4_rad2 = 377e-6; %770MPa L4_rad2 = 266.01e-6; %1.54GPa elseif M4 == 160 L4_rad1 = 822e-6; L4_rad2 = 403e-6; %770MPa L4_rad2 = 284.38e-6; %1.54GPa elseif M4 == 180 L4_rad1 = 872e-6; L4_rad2 = 427e-6; %770MPa L4_rad2 = 301.63e-6; %1.54GPa elseif M4 == 200 L4_rad1 = 919e-6; L4_rad2 = 450e-6; %770MPa L4_rad2 = 317.94e-6; %1.54GPa end %%%%% coating thermal & clipping loss variables %%%%% Power = 1000; % laser power BeamRad = 0.062; % beam radius MirrorRad = 0.17-0.003; % mirror radius theta1 = 0.283181419; % mirror flat edge angle d_SiO2 = 182e-9*17; % coating thickness SiO2 d_Ta205 = 131e-9*16; % coating thickness Ta2O5 aspect_ratio = 34/20; specific_weight = 40/(pi*0.34^2/4*0.2); %specific weight mirror_sigma = 6.2/34; % w/2a phi1_SiO2 = 4e-5; % coating loss angle SiO2 phi2_Ta205 = 3.8e-4; % coating loss angle Ta2O5 Y1_SiO2 = 7.2e10; % coating Young modulus SiO2 (Pa) Y2_Ta205 = 1.4e11; % coating Young modulus Ta2O5 (Pa) ni1_SiO2 = 0.17; % coating Poisson ratio SiO2 ni2_Ta205 = 0.23; % coating Poisson ratio Ta2O5 %% Conditions T_mir = 300; % temperature arm_length = 4000; % aLIGO arm length k1 = 1429.45595883388; % grad_descent_fit_z_bfgs_28July2010_part1 %pend.kcn k2 = 1648.69334920402; % grad_descent_fit_z_bfgs_28July2010_part1 %pend.kc1 k3 = 2382.96853678021; % grad_descent_fit_z_bfgs_28July2010_part1 %pend.kc2 k4 = 32963.3; % LASTI model fitting result Brett Shapiro (fitting filename: grad_descent_fit_z_bfgs_28July2010_part1) %pend.kw3 %k1~k4 from Dr.Shapiro's codes % k1=2.8505e3; % k2=3.2885e3; % k3=4.7382e3; % k4=6.5927e4; %% List of Constants constants.g = 9.81; % local acceleration (ms^-2) constants.hbar = 1.054572e-34; % (Plancks constant)/(2*pi [Js] constants.c = 2.99792458e8; % Speed of light in Vacuum [m/s] constants.kB = 1.380658e-23; % Boltzman Constant [J/K] %% constants from thermal_noise_test_141208.m file (constants for silica) constants.Y = 72e9; % Young's modulus constants.rho = 2202; % density constants.C = 740; % specific heat constants.kappa= 1.38; % thermal conductivity constants.alpha= 3.9e-7; % thermal expansion coefficient silica constants.beta = 1.52e-4; % Young's modulus variation of silica (1/Y dY/dT)