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The deviation from point-mass dynamics (the fact that we are dealing with
fluid bodies!) becomes important at the late stages of binary inspiral.

Each star is deformed by the tidal interaction from its companion.
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The tidal effect will not change the GW phasing much - this is difficult; e.g.
1046 erg at 100 Hz leads to shift of only 103 radians - but the star’s
deformability, encoded in the so-called Love number, may lead to a
measurable secular effect.

For each star, we have

2= 2 L RS = Q  quadrupole deformation
37 E strength of tidal field

Given that the masses can be extracted from the chirp, observations may allow
us to constrain the compressibility of the equation of state.

Note: If the radius can be inferred with an accuracy <5%, we would do better
than any upcoming nuclear physics experiments (but not NICER?)



Let us take a closer look at the tidal problem.

The impact of the tide from a binary companion is obtained from the perturbed
Euler equation;
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where the tidal potential is given by
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where D) is the radius of the orbit and y(?) is the phase.

There are two contributions:

— for m=0 we have a static contribution (evolving on the inspiral timescale).
This encodes the star’s tidal compressibility in the form of the Love number

- For m=+2 we have a time-dependent tidal driving which may become
resonant with the star’s natural modes of oscillation.



To work out the Love number, we consider static perturbations. That is, we have
—V'p — —0pV'p+ V'id = —V'y
P P
Expanding in spherical harmonics (with m=0), we have an effective
gravitational potential
U=+ xi
which satisfies
r2U] 4 2rU] — (1 + 1)U, = 4nGr?p,

Combining radial and angular components of the Euler equations we find that

p'oL=p'p

Using this we can reduce the problem to a single ODE;
12 4 G 2 2
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Note: The results imply that the fluid remains in chemical equilibrium
throughout the inspiral. This is probably not realistic.



Match to the external solution (at the surface of the star), where
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And extract the Love number k; from
GI, = 2k, R*"* 4,
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If we want quantitative results,
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Turning to the time-dependent part of the problem, the tide can lead to
resonances with many of star’s of oscillation. However, typically, the coupling
tends to be weak and the resonances do not have significant effect.

The main interaction may be with the star’s f-mode.

In order to understand this, let us sketch the derivation of the f-mode for an

incompressible fluid. The starting point is the perturbed Euler equation (but
with dp=0):

1
3t5v-|—;V5p+V5CI>:O V-v=0

As the flow must be irrotational, we have
1
0v = Vx > Oyx + —0p+ 0P =D = constant
0

where we have D=0, as the left-hand side vanishes at the centre of the star.
Find that:  VZx =0 V26d =0 Vp =0

Expanding in spherical harmonics (with m=0, without loss of generality), with

harmonic time dependence:
p X = ay ,rl}/lm
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Finally, we need to impose boundary conditions at the surface. For the pressure

we need 2
- = = ———a
Ap=0op+¢& e 0 > l 2 Y
If we also use the Cowling approximation (set »,=0), then we arrive at the mode

frequency:
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Main lesson: The f-mode frequency scales '
with the average density of the star. 3.2- .

Even though our calculation involved a
number of simplifications, this scaling is
robust.
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QPOs in the tails of magnetar flares have
already allowed us to try this out.
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The f-mode frequency is generally too high to become resonant with the tidal
driving, but recent work suggests that the associated dynamical contribution to
the tide is nevertheless significant.
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The final merger involves violent dynamics that can only be studied using full
nonlinear simulations.

This involves working with a foliation of spacetime (rather than the fibration we
used in the derivation of the relativistic fluid equations.

As in the vacuum case, one
introduces a family of spacelike

hypersurfaces as level surfaces of normal
a scalar “time” ¢. The normal to
these surfaces is

N, =—aV,t
and
th = aN# + g#

where « is the lapse and f* the
shift.

The velocity of a fluid is now given by
ut = W(N* +v#) N, =0

W =—Nu" = au' = (1 —vv')1/?

coordinates



The conserved (baryon) number flux now follows from
Vu(nut) =V, [Wn(NF +0")] =0
> &5( 1/2f )+D { 1/2ﬁ(avi—5i)} =0

where y is the determinant of the spatial metric, D, is the covariant derivative
in the hypersurface and the number density measured by the Eulerian
observer is

n = —N,nu" =nW
Note: the 3+1 version resembles the usual Newtonian result.

Energy/momentum conservation is more intricate. In the case of a perfect

fluid:

foliation fibration

TH = pNFNY + 2NWHGY) 4 ghv ™" = (p +e)u"u” + pg"”
p=N.N T“”—5W2—p<1—W2)

St = —fyMN T = (p+¢e)v*

SV = ’yMVJTW =y + (p+ &) W2v'?

You need to revert to primitive (fluid) variables in order to use EoS data!
Tricky if you include more physics (MHD).



Even though the merger involves violent dynamics (and complex physics) we
are learning that there are “robust” features.

In particular, there are peaks in the merger spectrum that can be associated
with stellar oscillation. The “f-mode” is particularly prominent.
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... and there is a “surprising” correlation with the tidal deformability!
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This should be good news for effort to extract information about the EoS.



