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In principle, any rotating deformed body (like the Earth!) radiates GWs.
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Estimate the GW emission from the quadrupole formula.
For a rotating rigid body, we have
v=Qxr, or v = eiijjxk
where Q! is the angular frequency and x' is the position vector. We have the

kinetic energy
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For the GWs we need the reduced quadrupole moment
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where the second term (the trace) is constant.

Note: In general easier to work in the body frame where I;; is diagonal.

Taking the star to rotate around the z-axis, we have AT=€;
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Next we assume that the star is a rotating ellipsoid (semiaxes a;) and introduce
the ellipticity (for small deformations):
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In the end we arrive at
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where /,=2MR’/5 is the moment of inertia for a uniform density sphere.

Compare the result to observed pulsar spindown:
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Example: In the case of the Crab pulsar, we have P=33 ms and

P~ 4.2 x 10713
Assuming typical NS parameters (1.4 solar masses & 10 km) we have

PGWN—8><1O 72

So... If the Crab pulsar spins down entirely due to GW emission, we need
e~ Tx1074

This is a “useful” result, but we know it is an upper limit. The observed braking
index (second derivative) is n=2.51, closer to the canonical value of 3 for EM
emission than the expected 5 for GWs.
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As in the case of the Crab, this is likely
- meer to be a very optimistic upper limit on
pithary g the actual deformation.
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The raw GW signal is feeble. We have
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This is far too weak to be detectable, but the effective amplitude of a continuous
wave signal improves as the square-root of the observation time.

Still need long observations, but many objects have known frequency and
position so we can (at least) target searches.
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Let us now consider the physics. What level of asymmetry can NS sustain?
Let us assume the asymmetry is due to elastic strain in the star’s crust.

o O

We compare a strained configuration, with oblateness ¢, to a relaxed shape,
with ¢<g,.

Note: This is a “hand-of-God” argument.

The total energy of the star takes the form
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Accounting for kinetic energy, changes in the potential energy due to the shape
and the strain. Minimising (at fixed J) we get
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for a “typical” model.



Since b<<1, a real NS will mainly be deformed by the centrifugal force.

However, ¢ and ¢,can differ only by a factor that encodes the breaking strain
of the crust material. In essence, we have the maximum deformation:
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The breaking strain is difficult to estimate, even for
terrestrial materials.

Fairly recent molecular dynamics simulations
suggest that the breaking strain u, ., is larger than
expected, around 0.1.

In essence, the crust is super-strong!
Key questions:

Why is the star deformed in the first place?

[Horowitz and Kadau 2009]

Do real neutron star mountains reach breaking
strain or are stresses released gradually (through
plastic flow)?

How does the crust “yield”?

Comment: In order to model the elastic strain we need to keep track of the
relaxed (unstrained) configuration - brings in evolutionary aspects.



As soon as we start thinking about evolution, it is natural to consider accreting NS.
In these systems asymmetries of the accretion flow may help generate the
deformations we need.

Moreover, there is a mystery: Why do the observed systems not spin as fast as they
could do according to theory?
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The fastest (known) NS in a low-mass X-ray binary, 4U 1608, spins at 620 Hz. In
order to explain this we may need,;

— a non-standard accretion torque
— additional GW spin-down (mountains, r-modes, B-field)



Let us first estimate the maximum rotation rate. We can do this using the so-called
Roche approximation (essentially pretending that the gravitational potential
remains that of a sphere). Then, a uniformly rotating star is determined by
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Introducing the enthalpy, this leads to
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Evaluate at the pole (with h=0 at the surface) to determine H;
GM
R,

Now the maximum rotation rate is reached when the surface rotates at the Kepler
frequency of a orbiting particle. At the equator when then have
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And we arrive at the (surprisingly accurate) approximation
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Next, let us ask how large the NS deformation has to be in order for GW emission to
balance the accretion.

Assuming for simplicity that the can ignore the star’s magnetic field, accretion leads
to a torque;

J=MVGMR

Relating energy and energy losses through
E=0QJ

And using the quadrupole formula result for the GW emission, we find that we need
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We already know that a NS can sustain this level of deformation. So accreting NS
may be relevant GW sources.

However;

— interaction between the star’s magnetosphere and the accretion flow may
significantly affect the torque (and can lead to spin equilibrium without GWs)

- the GW signal will be weak and as the systems are variable it is likely to be
difficult over a long enough stretch of data

- but... there may be some indicative evidence from X-ray timing.



We have discussed the largest permissible mountain, but we would actually like
to know the smallest deformation we should expect.

As usual in astrophysics, the answer may be “the magnetic field”.

Simple estimate (based on energetics) leads to
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If protons form type II superconductor (as expected), the magnetic field is
confined to fluxtubes. This increases the tension by a factor of H_ /B, where
H_ ~10% G, and we get
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The GW emission from known pulsars would still not be detectable...
The “smallest” NS mountain may simply be too small.

e~ 1077

More detailed calculations (pretty much) give the same results.

In general, the modelling of magnetic deformations is tricky because we need
the internal field configuration (which is unknown).



‘» | Nevertheless, it is worth taking a brief look at
"™ | this problem.
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There is a competition between the poloidal
(which makes star oblate) and toroidal (which
makes it prolate) components.

The ratio between the two is not known, but
numerical models tend to find that the toroidal
contribution is weaker.
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pure tor

Although... for magnetars it is usually “assumed”
that the opposite is true. So something is
“wrong”.

Difficult to reconcile within the standard assumptions. Hydromagnetic
equilibrium follows from:
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- for barotropes we arrive at the Grad-Shafranov equation,

— for non-barotropes we may use “whatever field we like”, but the system will
not be in chemical equilibrium.

Note: Few (if any) known equilibria are actually stable!



