



#### Drag-free control of LISA Pathfinder

M Hewitson for the LPF team GEO sim+control meeting, May 6th 2011

#### Contents

Listender Listender

- 3 bodies
- 18 degrees of freedom
- show which sensors
- describe the control scheme



#### What's the point of it all





# What's the point of it all



- To place a body in a 'pure' geodesic motion
  - place a test-mass in space
  - shield it from external disturbances (with a SC)
  - SC should follow the TM without being in contact
    - minimise the SC-TM forces



# What's the point of it all

- 1 Stander
- To place a body in a 'pure' geodesic motion
  - place a test-mass in space
  - shield it from external disturbances (with a SC)
  - SC should follow the TM without being in contact
    minimise the SC-TM forces
- How can we assess the 'goodness' of the geodesic motion?
  - use another test-mass as a quiet reference from which to measure the motion of the first
  - second test-mass must follow the first



#### System characteristics



#### • Low frequency!

- make measurements around 1mHz
- experiments take a long time
- data sampled 10Hz or less





#### LPF bodies



- 3 bodies
- 18 degrees-of-freedom
- Control 15 degrees-of-freedom





# Force gradients

- Need gravitational balancing to minimise dc forces
  - expected level  $\sim 10^{-9}$  m s<sup>-2</sup>
- Residual dc forces need to be compensated for electrostatically







# **Unstable Dynamics**

- 15 Stander
- Residual effects like self-gravity and magnetic effects produce a spacial force gradient
- This produces a stiffness for the TMs which can be negative
  - unstable test-mass dynamics
- So we need to control the positions and attitudes of the TMs
- Bias control voltages creates additional stiffness



LPF







M Hewitson, LPF Control, GEO sim+control, 6th May 2011

#### Components







#### M Hewitson, LPF Control, GEO sim+control, 6th May 2011

#### Components







LTP









F

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

# Sensing the motion







#### Autonomous Star Trackers

- 15 Administra
- Sense the attitude of the SC w.r.t. to the 'fixed' stars
- Accuracy of about 100 arcsecs / rtHz at 1mHz
- Produces measurements at 2Hz







 $f_{\rm het} \approx 1.6\,{\rm kHz}$ 

 $x \approx 9 \,\mathrm{pm}/\sqrt{\mathrm{Hz}}$  at  $3 \,\mathrm{mHz}$  $\phi \approx 10 \,\mathrm{nrad}/\sqrt{\mathrm{Hz}}$  at  $3 \,\mathrm{mHz}$ 



M Hewitson, LPF Control, GEO sim+control, 6th May 2011



We use 4 Mach-Zehnder IFOs



 $f_{\rm het} \approx 1.6 \, \rm kHz$ 

![](_page_16_Picture_6.jpeg)

![](_page_17_Picture_1.jpeg)

- We use 4 Mach-Zehnder IFOs
- X1 IFO measures the relative position of TM1 and SC
  - also measures two angles (phi, eta) with DWS
    - roll around beam is not measured

![](_page_17_Figure_6.jpeg)

 $f_{\rm het} \approx 1.6 \, \rm kHz$ 

![](_page_17_Picture_9.jpeg)

![](_page_18_Picture_1.jpeg)

- We use 4 Mach-Zehnder IFOs
- X1 IFO measures the relative position of TM1 and SC
  - also measures two angles (phi, eta) with DWS
    - roll around beam is not measured
- X12 IFO measures the relative position (and attitude) of TM1 and TM2

![](_page_18_Figure_7.jpeg)

 $f_{\rm het} \approx 1.6 \, \rm kHz$ 

![](_page_18_Picture_10.jpeg)

![](_page_19_Picture_1.jpeg)

- We use 4 Mach-Zehnder IFOs
- X1 IFO measures the relative position of TM1 and SC
  - also measures two angles (phi, eta) with DWS
    - roll around beam is not measured
- X12 IFO measures the relative position (and attitude) of TM1 and TM2
- Fixed IFO with unequal arms to measure frequency noise

![](_page_19_Figure_8.jpeg)

 $f_{\rm het} \approx 1.6 \, \rm kHz$ 

![](_page_19_Picture_11.jpeg)

![](_page_20_Picture_1.jpeg)

- We use 4 Mach-Zehnder IFOs
- X1 IFO measures the relative position of TM1 and SC
  - also measures two angles (phi, eta) with DWS
    - roll around beam is not measured
- X12 IFO measures the relative position (and attitude) of TM1 and TM2
- Fixed IFO with unequal arms to measure frequency noise
- Fixed IFO with equal arms as a reference measurement
  - measures the IFO noise

![](_page_20_Figure_10.jpeg)

 $f_{\rm het} \approx 1.6 \, \rm kHz$ 

$$x \approx 9 \,\mathrm{pm}/\sqrt{\mathrm{Hz}}$$
 at  $3 \,\mathrm{mHz}$   
 $\phi \approx 10 \,\mathrm{nrad}/\sqrt{\mathrm{Hz}}$  at  $3 \,\mathrm{mHz}$ 

# X1 and X12

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

Friday, May 6, 2011

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

# X1 and X12

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

# Inertial Sensors

- Each test-mass is surrounded by a housing containing multiple electrodes
- With these electrodes we can sense the position of the TM w.r.t. the housing
  - ~1nm/rtHz @ 1mHz
- We can also apply forces between the TM and housing

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

#### Actuation

![](_page_24_Picture_1.jpeg)

- We have two types of actuator:
  - the micro-propulsion system on the SC
    - 6 degrees-of-freedom
    - up to 100 uN thrust with uN accuracy
  - electrostatic actuation on each TM
    - 6 degrees-of-freedom per TM
    - >uN force with fN accuracy

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_25_Picture_1.jpeg)

sensing

![](_page_25_Picture_3.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_2.jpeg)

#### x-axis loop diagrams

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_5.jpeg)

01

 $0_{12}$ 

![](_page_34_Figure_1.jpeg)

1. Release TMs

- 2. Grab test-masses in accelerometer mode
  - 1. both TMs are 'locked' to the SC via capacitive sensing and actuation
- 3. Activate IFOs
- 4. Switch SC-TM1 position sensing to IFO X1 and change controller
- 5. Switch TM1-TM2 position sensing to IFO X12 and change controller

![](_page_34_Picture_8.jpeg)

#### Entering science mode

![](_page_35_Picture_1.jpeg)

![](_page_35_Figure_2.jpeg)

# Open-loop gains

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

Friday, May 6, 2011

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_38_Picture_1.jpeg)

Actuation causes noise

![](_page_38_Picture_3.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

![](_page_39_Picture_1.jpeg)

- Actuation causes noise
- Do an experiment where the TM2 x-actuation is off
  - at least briefly

![](_page_39_Picture_5.jpeg)

![](_page_40_Picture_1.jpeg)

- Actuation causes noise
- Do an experiment where the TM2 x-actuation is off
  - at least briefly
- Toss the TM like a coin

![](_page_40_Picture_6.jpeg)

![](_page_41_Picture_1.jpeg)

- Actuation causes noise
- Do an experiment where the TM2 x-actuation is off
  - at least briefly
- Toss the TM like a coin

![](_page_41_Figure_6.jpeg)

#### New control-mode

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Picture_3.jpeg)

M Hewitson, LPF Control, GEO sim+control, 6th May 2011

#### Acceleration

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_3.jpeg)

# The End

Friday, May 6, 2011

IABG