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= Current ground based detectors are
already running close to fundamental
limits imposed by HUP.

= Utilise coupled cavities to maximise the
stored light level.

» Maximal strain sensitivity between 50Hz
and SkHz.

» Limited by suspension thermal
noise/seismic vibrations at low frequency
and shot noise at high frequencies.

* Improvements in future detectors
- More effective seismic isolation
- More powerful lasers
- New optical topologies

- Higher quality mechanical components
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Future detectors will be limited by v
quantum noise. |
;Lme

Quantum noise (-

Laser
= Photon shot noise (Poissonian noise in in the E e b
number of photons detected) at high Photodiode
frequencies.

photon shot noise

» Radiation pressure noise.

X F
Radiation pressure effects W
timea
= Quantum scale force noise.

Amplitude fluctuations == mirror position fluctuations |  ___ Suspended

o . mirror m v,—rllll
= Parametric instability. MW
LWL

» Opto-mechanical rigidity / optical springs! 5

radiation pressure noise

illustrations courtesy of Stefan Hild
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Optical springs
= Occurs in detuned optical cavities.

» Optical restoring force comparable to or greater than the mechanical
restoring force.

* Phase fluctuations induced by mechanical motion of the mirrors are
linearly coupled to intensity fluctuations of the intra-cavity field.

= Mirrors coupled with spring constant that can be as stiff as diamond!

Cantil Cantilever AN

Optical
Spring

/

A Power

Power Recycling 2.7kg Input Light-weight
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Future detectors will make use of
significant strength optical springs
= Advanced LIGO - utilising detuned signal

broadband
— narrowband

Noise Spectral Density [1/vHz
< .
]
7

recycling.
= Optical Bar / Optical Lever - achieve optical 10

rigidity. R

10’ 10° 107

These techniques are possible  1Haz)
approaches towards sub-SQL id"aﬁe‘jnj'Go
performance over at least some of the N
detection band.
At frequencies below opto-mechanical Reocin | R
resonance, the response of the system | | L Vi M
to external disturbances (seismic or G seam 1?
thermal) is suppressed by the optical | =~ 1 s
rigidity. o [ |
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it sk
- 10m vacuum tank 320

system

= Triple-stage
suspensions

= Passive seismic
isolation system

= Fused-silica
mirrors

« 2W Nd:YAG
1064nm Laser light

= Sophisticated
digital controller
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- - Ceitile_ver Ca_mile_ver NN
Experimental aims:
= Examine properties of optical spring
in a fully suspended environment.
= Create an optical spring in a coupled
cavity configuration — analogous to Lght weght
recycling cavities. r’e ¥ ~
Power Recycling Fabry—f’erot -
Cavity Cavity X

= Characterise the optical spring effect
and investigate the effect of detuning

to spring strength. A Power ggtriicr;]zl

/

= Explore the interactions with the
control system. Take steps towards
digital control.
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Experimental design:

e Triple stage light-weight suspension design
featuring passive eddy-current damping.

The optical spring experiment

e 100g end test mass (with fused silica mirror).

e Detuned Fabry-Perot cavity.

e Three mirror coupled cavity configuration.

Mirror]

Fabry-Perot
Cavity

27kg Y
Input
Mirror

Optical spring experiment

Power-
Recycling
Cavity

L

-

3-Mirror Coupled
Cavity

From Input
Optics

\

AN

10 m Diffractive
Cavity
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Coupled cavity control scheme: . L
15 Measured length sensing signal (AM) 15 Measured length sensing signal (PM)
= Modified PDH technique. ' 1
0.5 0.5
= Amplitude and Phase Modulation. 0 0
- PM sidebands @ 18MHz used to derive N
arm cavity length-sensing signal. gyl SHBERUW | gy SO P
Cavity FSR Cavity FSR
= PM sidebands @ 10MHz, and AM 15, Moot g s s (), et ngn v sl )
sidebands @ 14.525MHz used to derive 1
. . . . 0.5 0.5
recycling cavity length-sensing signal. ) ]
= Flexible scheme to decouple the control  *¢ =
signals of the two cavities. 115 @ G © @ © O @ 115 @ ® © @ @ O ©
g Cavict)ySFSR ! . Cavci::fFSR :

= Already tested on cavity with 2.7kg test
masses [1].

(a)Carrier, (b)4.525MHz, (c)10MHz, (d)14.525MHz, (e)10MHz, ()4.525MHz, (g)Carrier

[1] Techniques in the optimization of length sensing and control systems for
a three-mirror coupled cavity 2008 Clas Quan. Grav., Huttner et al

= Allows us to detune one cavity and
maintain decoupling.

= Error signals are fed back to the PZT and temperature of laser to control AC and
to recycling mirror EM actuators to control PRC.
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Characterising the coupled cavity

= Obtain open loop transfer function,
which contains the sum of all the
elements in the loop.

PZT > Optical

A Y
" Inject into channel B and monitor |

error point. W i

Feedback Servo Pre-Amp
= Subtract feedback servo shape and I e 1
PZT response. Error Point Injection Point

Generating optical springs
= Detune arm cavity by injecting an offset to the laser frequency.

Blueshifting the_cavity = redshifting the laser frequency

* Inject characterisation signals into the same channel.
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Initial observations

* The transmitted power and therefore intra-cavity power
changed depending on level of detuning.
Moving cavity away from optimum resonance condition.

* Only one polarity of detuning created 180 degree phase flips.
Blueshifting cavity = optical spring
Redshifting cavity = optical anti-spring

* Error signal increasingly more difficult to observe at
frequencies below opto-mechanical resonance.

Optical rigidity suppressing cavity response
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Full Span Sweeps

Experimental results
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Full Span Sweeps
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Zoomed Sweeps
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Anti-Spring and Optical Spring effect
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Challenges that we faced measuring optical spring effect:

» Getting a feel for the level of detuning required.

Cavity alignment and mode matching can have an affect!

= Amplitude of characterisation signal must be carefully chosen.

Small enough yet large enough!

Characterising modulates the strength and frequency of OS.

* We don’t have an independent frequency reference.

We used the same cavity length as a reference.
Mirror motions require high gain servo.
Optical spring in bandwidth of servo!
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All of the data that was collected has been analysed together.

All data OS frequency (from 90 deg point) and detuning
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= Maximum optical spring occurs @ 480Hz when
detuning/linewidth = 0.5.

= Optical spring strength of K = 8.3 x 10° N/m.

= Towards the end of the month when alignment had improved and
intra-cavity power increased, a 100mV offset had a much bigger
effect, resulting in detuning/linewidth > 0.5.

= If we consider replacing the optical mode with a rigid beam with a
Youngs modulus E, and area A of the beam spot (7um?), and
length L = 9.87 m of the cavity, gives

E=KL/A=1.16 Tpa
effectively stiffer than diamond!
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» Successfully demonstrated use of lightweight cavity end mirror, as
part of coupled Fabry-Perot cavity, sensitive to RP forces.

= By blueshifting optical cavity -> created, observed and characterised
the OS effect and probed system dynamics.

* Produced OS with frequencies up to 480 Hz corresponding to an
impressive optical spring strength of 8.3 x 10°N/m.

» Results were not obtained easily.

» Fully implement GEO style digital controller
soon.

Optical Bar:
pr?of_ of

= Take steps towards optical bar topology principle
proof-of-principle experiment.

— Swap input mass for lightweight suspension and mass.
TMx Laser

=

— Use separate local readout scheme to monitor position.

illustration courtesy of Stefan Hild

J
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Thanks for your attention.



