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Outline

Today‘s topics:
• A brief introduction
• Design of  the SubSQL IFO 5DOF length sensing system
• Cavity stability of the coupled cavity IFO arms
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SubSQL Interferometer topology
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CTN reduction: Khalili Cavities
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Replace end mirror with over 
coupled compound cavity

• Small number of coating layers 
on IEM, highly reflecting EEM

• Cavity held on anti-resonance to 
act as a reflector

• Rear mirror thermal noise 
contribution effectively 
suppressed by cavity, less noise 
coupling from EEM

• Reduction of EEM coating 
thermal noise approximately by 
a factor of two to three

“Khalili Cavity“



Design sensitivity
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Longitudinal control requirements

Primary requirement for LSC sub-
system: compatibility with 
the sensitivity goal

• Suppress DARM fluctuations 
in order to reach QN limited 
sensitivity of the diff. arm 
cavity mode

• Fluctuations of remaining DOF 
must not impair DARM 
sensitivity, i.e. noise 
contributions must be below 
DARM sensitivity

• Stabilize RMS deviation of 
each length-DOF to within 1% 
of its corresponding line width
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Longitudinal DOF

Five longitudinal DOF to be 
stabilized:

• Central MI differential, 2 arm 
cavities, 2 Khalili cavities

• Coupled cavity systems 
incorporate coupled error 
signals, resonance state 
depends on all mirrors‘ 
tunings

• Design goal: obtain decoupled 
length signals for all five 
degrees of freedom with least 
effort possible

• Starting point: traditional 
frontal PM based control 
scheme
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The formal description
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Columns = length DOF1 – DOF5

Regarding the IFO as an LTI system:

• Linear relation between displacement and 
extracted length signals
• Sensing matrix M

 Elements are DC limits of optical TFs
 Each column corresponds to one 
length DOF
 Each row corresponds to one length 
signal

• Optically decoupled sensing systems 
preferred, i.e. looking for fully diagonal M
• “Indirect“ diagonalization by changing 
sensing system parameters not always trivial,  
many knobs to turn

Sensing 
Matrix

Displacement
vector

Signal 
vector



Sensing system optimization
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Sensing system design ingredients:

• Numerical IFO model
• Parametrized sensings system: PM 
frequencies, phases, ...
• Iterative “trial-and-error“ search for 
sensing system with desired performance

Automating this task:

•Formulation as an optimization problem
• Wrap numerical model up in between 
an optimization algorithm and a module 
to evaluate iteration step quality 
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Global optimization algorithm
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Global Optimization algorithm:

• Many different algorithms available, 
focussing on “Genetic Algorithm“ (GA)
• Properties: 

• Based on natural selection as in 
biological evolution
• Generates “population“, i.e. set of 
sensing parameter vectors
• Parameter used to simulate a sensing 
system whose performance is 
evaluated by a subsequent stage
• Best “individuals“ of a population are 
allowed to reproduce
• “Mutation operator“ to prevent 
uniformity of a population
• Population evolves towards optimum 
over successive generations



Sensing system optimization
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The numerical IFO model:

• Optimization module was built around 
SubSQL IFO Optickle model

• Can be easily replaced with any 
simulation with similar functionality

• Optickle is
• AdvLIGO reference for frequency 
domain modelling
• Written in Matlab, slow but easy 
to extend
• Includes radiation pressure

Optickle



Sensing system optimization
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Evaluation of the quality of a solution:

• Receives signal vectors from numerical IFO 
model, one for each DOF

• Multitude of matrix realizations can be 
composed by taking all combinations of 5-
element subsets of available signals in S

Numbers:
 2 Ports + 2 RF frequencies => 10 signals 
=> 10!/5!=30240 matrix realizations
 4 Ports + 2 RF frequencies => 20 signals 
=> 20!/15! ≈ 1.9 million matrix realizations

Constraints help to save computational cost!



Sensing system optimization
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Evaluation of the quality of a solution:

• Optimizer needs feed back of the quality of 
the current iteration
• Figure of merit for “diagonality“ of a matrix: 
volume spawned by it (normalized) row vectors, 
i.e. based on determinant of normalized matrix 



Sensing system optimization outlook

What‘s next:
• Second numerical model (Finesse) for double checking of results
• Parallelize code to run configurations with realistic no. of sensing ports
• Questions to be answered:

– Can we control the 5-DOF interferometer with frontal phase modulation? 
More “exotic“ techniques required, e.g. double demodulation?

– Do we need to access sensing ports besides the natural ones to obtain 
sufficiently decoupled error signals?

– Do we have to complement the PM scheme with AM, auxiliary lasers, ... ?
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Aux. LasersPM-PM PM-AM



10m Prototype IFO optical design

• Our reference for experiment outline: K. Somiya‘s conceptual design report
• Majority of parameters with an immediate impact on sensitivity goal are fixed
• “Technical“ parameters, e.g. Cavity lengths, RoCs, ... left to be determined
• Need to find configuration which can be stably operated
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Fixed parameters
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N=2,

1. Mirror mass

2. Mirror aspect ratio

3. Mirror reflectivities

4. Laser spot size

• Optimal mirror mass, m=12g
• Mirrors with m=100g preferred

• Optimal radius: a=2.43cm
• Optimal thickness: h=2.45cm

• N=8, R=99.07% for IM
• N=2, R=51.151% for IEM
• N=15, R=99.997% for EEM

• Spot radius of w=9.7mm on
arm cavity mirrors



Laser spot size requirement

• Larger spot = lower power density per 
unit area, desired to reduce CTN and 
STN

• Upper limit is set by tolerable 
diffraction loss

• Conceptual design suggests to go for 
w=a/2.5=9.72mm which corresponds 
to a diffraction loss of approx. 
2.25ppm

• Complicates finding a stable 
configuration
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The arm cavity

SubSQL IFO-style arm cavity:
• Feasible length due to spatial constraints: 

10.03 m – 11.26 m
• Choose a symmetric, nearly concentric 

configuration with RoCs slightly larger 
than L/2 to fulfill spot size requirement

• Stability: g2(Lmin)= 0.9987 ; g2(Lmax)= 
0.9984 
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Configuration candidates
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Strongly curved IEM AR side, second waist in KC

Modest IEM AR side curvature, nearly collimated beam in KC



Configuration candidates
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R=5.2m

L = 10.3964 m

R=5.2m R=0.2m R=0.5m

L = 1.0074m

R=5.2m R=5.2m R=1.6m R=-281.63m

L = 10.3964 m L = 0.9791m



Configuration candidates
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R=5.2m

L = 10.3964 m

R=5.2m R=0.2m R=0.5m

L = 1.0074m

• Stability IM-IEM g ≈ 0.998; IEM-EEM g ≈ 0.99999
• KC stability highly susceptible to changes of the KC length:                      

KC length increase by 3 micron =>  g > 1
• Apparently inoperable with nominal spot size



Configuration candidates
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• Stability IM-IEM g ≈ 0.998; IEM-EEM g ≈ 0.99999
• KC stability highly susceptible to changes of the IEM AR RoC:                 

AR RoC  increase by ≈ 0.1 mm => g > 1
• Thermal actuation difficult, would affect IEM HR as well
• Loophole: compensate RoC error via KC length ?!

R=5.2m R=5.2m R=1.6m R=-281.63m

L = 10.3964 m L = 0.9791m



RoC “tolerancing“
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+1% / -1% +1% / -1% +1% / -1% +1% / -1%

L = 10.3964 m L = 0.9791m

• Change each RoC by +1% and by -1% 
• If the corresponding cavity gets unstable try to recover stability by changing 

corresponding length
• Three different outcomes: 

– stability not affected
– cavity gets unstable, stability can be recovered by shifting mirrors
– cavity gets unstable, stability cannot be recovered by shifting mirrors

• Spot size requirement is violated in all cases but can be recovered



Cavity options
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Alternatives:

(a) No focussing of beam in IEM 
transmission, larger EEM to 
control diffraction loss => new 
suspension?

(b) No focussing of beam in IEM 
transmission, live with increased 
diffraction loss => can we afford 
this?

(c) Reduced spot sizes on one or 
more HR coatings => increased 
thermal noise

(d) “Off-nominal“ design + online 
tuning to nominal op. mode



Relaxing the spot size requirement
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Relaxing the spot size requirement
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THANK YOU FOR YOUR ATTENTION

28

Visit us at http://10m-prototype.aei.uni-hannover.de
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