

Glasgow 10m: Future ISC challenges Bryan Barr Institute for Gravitational Research

0

Wednesday 27th Jan, 2010

Current aim of the Glasgow 10m prototype:

- Set up a 3 mirror coupled cavity optical spring
 - Effectively a power recycled, detuned Fabry Perot cavity
- Investigate sensing and control schemes
 - First set up orthogonal sensing for the cavities
 - Then control the spring circulating power, offset detuning, etc
- Investigate readout schemes/methods
 - Light coupling/end mirror + optical spring = ideal test platform for QND readout

Current set up is with heavy mirrors

- Arm cavity with triple-suspended fused silica mirrors
- Power recycling cavity with double-suspended composite optic
- Coupling mirror is a heavy mirror (flat, high reflectivity)

• PRC finesse ~50, AC finesse ~600

 Incident power ~200mW – can be increased quite easily – particularly if we tweak some parameters in the modulation arrangement...

At the simplest level the control scheme is straight forward

- 3 sets of RF sidebands
- PRC controlled by beat between AM sidebands at half PRC FSR and 10MHz PM sidebands
- AC controlled by beat between carrier and extra set of phase sidebands

 Highly decoupled near the operating point – unlike conventional PRC control schemes, the PRC doesn't become unstable when the AC is detuned

Why detuning?

Put simply – detuning a cavity is how we generate an optical spring...

 The spring resonance parameters depend on the degree of detuning and the power incident on the mirror

Where do we go from here?

Current status

- Control scheme exists and can be used to lock the 3 mirror coupled cavity (3MCC) at centre of resonance
- All heavy mirrors
- Analogue controls robust, but not very adaptable

Coming soon

- Digital controls flexible control structure
- More power! The more we have, the higher we can push the optical spring and the more information we can glean from the system

Light (100g) mirror

- Initially replace the end mirror with a light mass to accentuate the optical spring
- Later can replace the intermediate mass (coupling mirror) more like an optical bar

Anticipating problems...

Alignment

- While characterising the cavity control scheme we noticed that alignment played a large part in coupling between the cavities and lock stability
- In particular, mismatches in mode-matching and alignment contribute to offsets and can cause distortion of the error signals
- Numbers in the right hand plot indicate n+m of TEM_nm modes
- With a light mirror where the goal is radiation pressure dominance – the light mirror will twist in response to varying light power

Light mirror + high circulating laser power

- Alignment will be a problem
 - Can fix with an autoalignment system
- Lock acquisition may also be difficult
 - Mirror gets knocked about while trying to lock
- Adaptable digital controls may be vital to operation...

Can we implement a local readout scheme?

- Challenging, but with a light mirror coupled cavity we have a good test system to build on...
- Methods are still under consideration but whichever method is chosen, it will have to be controlled and operate within the existing framework

This has been an overview of 3MCC work in Glasgow

- Not much in the way of detail...
- If you want to know more just ask! We're more than happy to talk about it.
- If you have any suggestions we'd like to hear them!
- If you would like to get involved we'd like to hear from you!