CDS tutorial

Michael Born ISC meeting, AEI Hannover 2012/12/06

Overview

- Digital control
- LIGO control and data system (CDS)
 - Basics
 - User interaction
- Digital filters
- CDS tools
- Examples

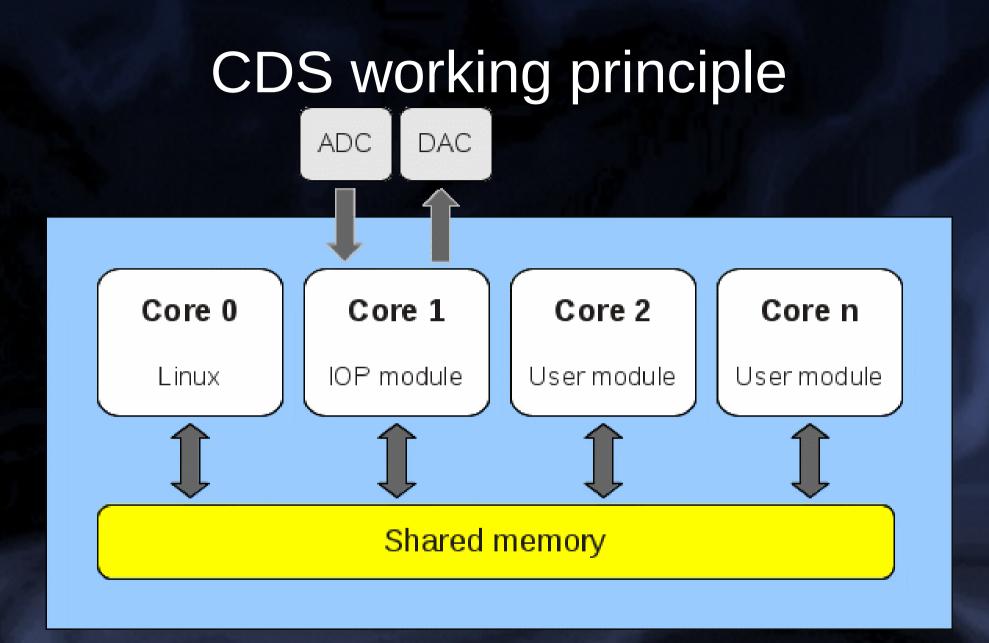
Digital control

Analog signal conditioning

- f_{Signal} < f_{Nyquist} = ½ f_{Sampling}
 Control loop with digital filters

- Bandwidth limitations
- Signal/noise limitations

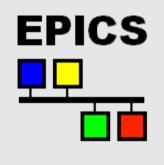



CDS control bandwidth

• $f_{\text{Sampling}} = 64 \text{ kHz} (2^{16} \text{Hz})$ • Signal latency $t = t_{AA} + t_{ADC} + t_{CDS} + t_{DAC} + t_{AI}$ $-t_{\Delta\Delta} = t_{\Delta I} = 40 \mu s$ $-t_{ADC} = t_{DAC} = 10 \mu s$ - t_{cos} = 16..24µs (timing system dependent) 1 / t = 1 / 120µs = 8.3kHz = f Control bandwidth \approx f / 10 \approx 1kHz AA-Filter ADC Sensor CDS Computer Al-Filter DAC Actuator

LIGO CDS

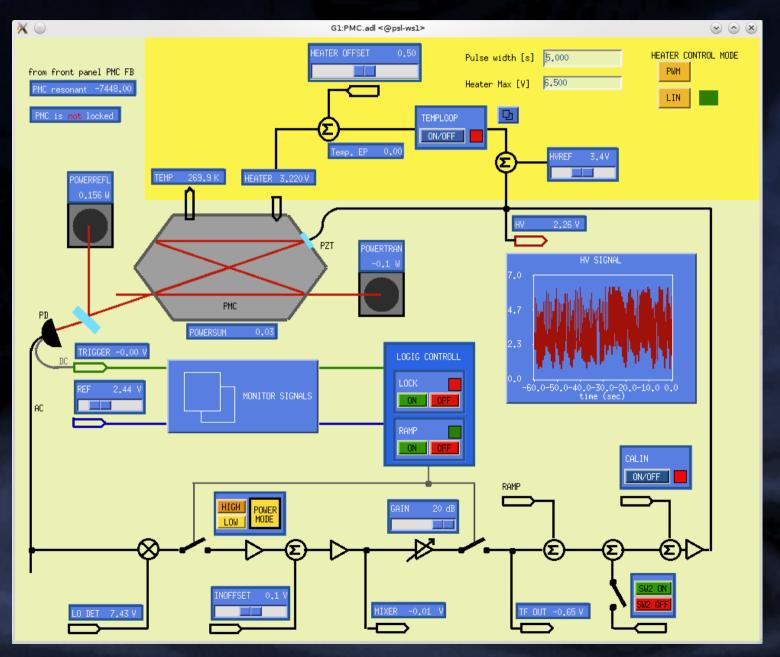
- Development @Caltech (Bork, Ivanov)
- Standard PC hardware (multi-core, fast networks)
- Linux operating system
- Commercial 16/18bit ADCs/DACs
- Custom filters (LIGO or AEI design)
 Seelability
 - Scalability
 - Large user base



Control loops in user modules Modules individually (un)loadable

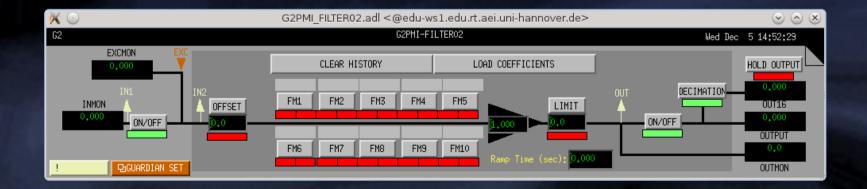
User modules

- Run @2, 4, 16, 32 or 64kHz
- Communication between modules

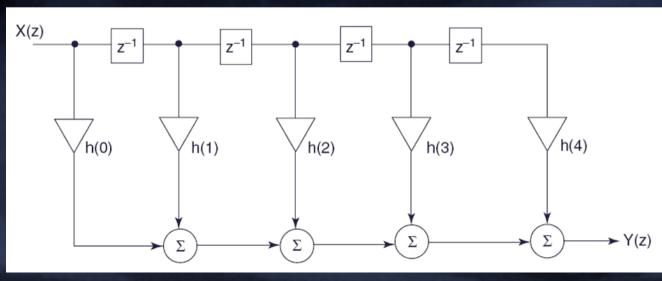


- Remotely controllable via EPICS channels
- Experimental Physics and Industrial Control System
- EPICS channels over network @16Hz
- MEDM graphical user interface (customizable)

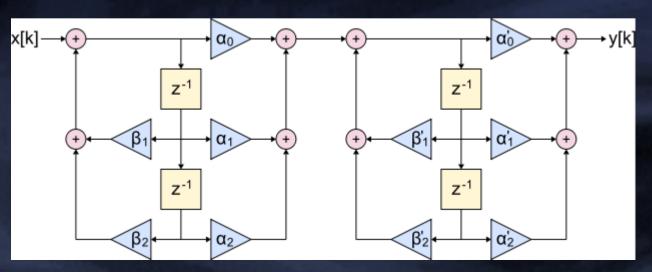
MEDM screens



MEDM screens (2)


MEDM screens (3)

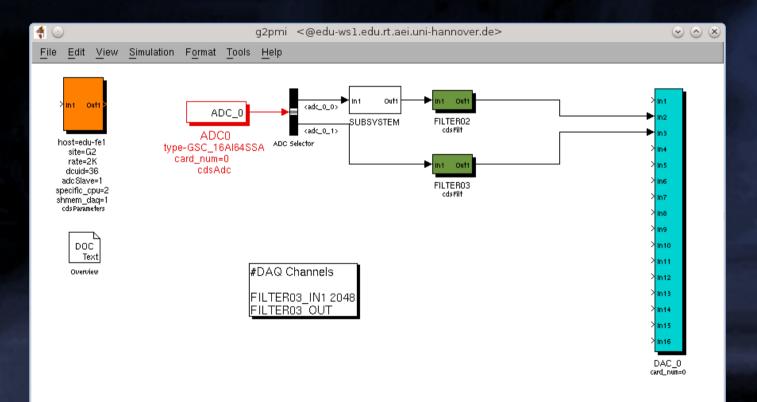
Digital filters: FIR


- CDS: Finite impulse response with ≦512 taps
- Computational heavy
- For 2kHz or 4kHz loops
- Coefficients defined in modelName.fir
- Nobody uses it (C-code instead)

©Walter Dvorak

Filters: IIR

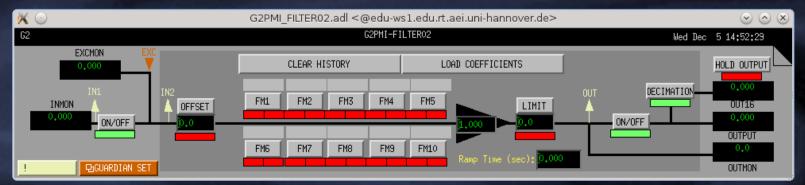
- Infinite impulse response filter
- CDS implementation: second order sections
- Up to 10 SOS
- Coefficients from z-domain transfer function
- Matlab and tools help


©Walter Dvorak

Tools, tools, tools

- Many useful tools little documentation
- Select channels to record: daqconfig
- Look at time domain data: dataviewer
- Filter development: foton
- Spectrum analyzer: diagnostics test tool (DTT) – diag / diaggui
- Many tools are part of the global diagnostic system (GDS) https://www.lsc-group.phys.uwm.edu/daswg/download/software/source/
 - Many user scripts available

Tutorial (1)


Matlab: g2pmi.mdl

Tutorial (2)

MEDM: GDS_TP screens
MEDM: pmi FILTER02, FILTER03

Tutorial (3)

Filter design with foton

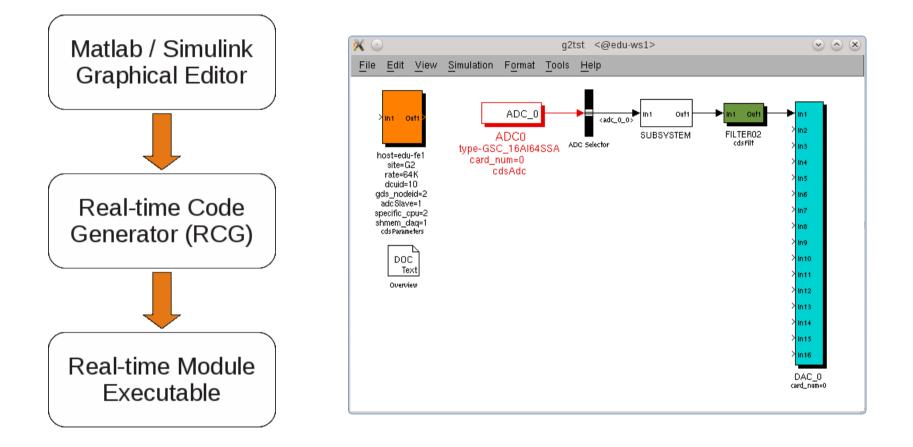
X 🖸 🗌		Foton	00
<u>File P</u> lot	<u>W</u> indow		<u>H</u> el
Design	Graphics		
	, − Module Sele Path:	ection Canas Sections Sections Sections Sections Sections Sections Switching Input: Zero History Output: Immediately Chans Ramp Time: 0 Sec Tolerance: 0 Timeout: 0 Sec	
	File:	G2PMI.txt	
	Module:	FILTER02 Copy Paste Cut Undo	
	Design fSample: Command:	2048 Hz Import butter("LowPass", 3, 10¢)	
	Alternate:	zroots([],[0.828239+i*0.227232;0.828239-i*0.227232;0.732183],0.00271621) s-Plane: O s (rad/s) O f (Hz) O n (Hz/norm) O Polynomial z-Plane: O SOS O Roots O Direct O Online	
	Add:	Gain ZPK RPoly ResGain Notch Ellip Butter Cheby1 Cheby2 Comb SOS zRoots Direct	
	Gain:	0 Hz Value: 1 mag = Set Current: 0 0 dB/deg =	

Tutorial (4)

Measuring transfer functions with diaggui

Old manual: LIGO T990013-v1

🔀 🖸 🛛 Di	agnostics test tools		\odot \odot	\otimes					
<u>F</u> ile <u>E</u> dit <u>M</u> easurement <u>P</u> lot <u>W</u> indow			He	۶lp					
Input Measurement Excitation Result									
Measurement									
🔿 Fourier Tools 💿 Swept Sine Response 🔿 Sine Response 🔿 Triggered Time Response									
-Measurement Channels-									
⊙ Channels 0 to 14 ○ Channels 15 to 29 ○ Channels 30 to 44 ○ Channel	ils 45 to 59 . O Channels 60 to 74 . O	Channels 75 to 89							
0 🔽 G2:PMI-FILTER02_OUT 💽 5	•	10 🗖	•						
	•	11 🗖	•						
2 🗖 🔽 7 🗖	•	12 🗖	-						
3 🗖 🖉 🖉 8 🗖	•	13 🗖	-						
4 🗖 💿 9 🗖	•	14 🗖	▼						
Swept Sine Response									
	ng Time: 10.0 🚔 %								
Measurement Time: ☑ 10 ♣ cycles ☑ 0.1 ♣ sec Averages: 10 ♣ Harmonic Order: 1 ♣									
Window: Hanning 🔽 🗖 Power Spectrum Number of A channels: 0									
Sweep Direction: O Up O Down Sweep Type: O Linear O Logarithmic	User Format: Freq./Ampl.	Edit		4					
_ Start Time									
Now	O In the future: 0:00:00 €	hh:mm:ss							
C GPS: 1038765564 € sec 0 € nsec	○ In the past: 0:00:00 🖨	hh:mm:ss							
O Date/time: 5/12/2012	Time now Lookup		Slow down: 0 🖨 sec/avrg.						

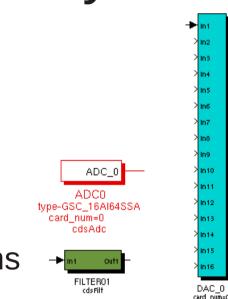

Tutorial (5)

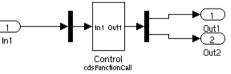
Viewing live data with dataviewer

		Grace: Untitled (modified	d) <@edu-ws1.edu.rt.aei.uni-hannover.de>	\odot \otimes \otimes
🗙 🕑 Data Viewer <@edu-ws1.edu.rt.ae	i.uni-hannove	r.de> 📀 👁 🙁		<u>H</u> elp
<u>F</u> ile F <u>r</u> ames		Help		
Input] Display] Signal] Realtime] Playback] Trigger	-Sional -	1: G2:PMI-FILTER02_OUT 2: G2:IOP-ADC_FILTER_0_EXCMON		
Type Full I Mode Standard I Ch I I On	□ 1 □ 9	4: G2:IUP-ADC_FILTER_O_GAIN	S Data Display 1 Channel at 12-12-05-18-11-3	33
Resolution 128 Refresh 1 G2:PMI-FILTER02_OUT	🗆 3 🗔 11 🖣	5: G2:IOP-ADC_FILTER_O_TRAMP 6: G2:IOP-ADC_FILTER_O_LIMIT	Ch 1: G2:PMI-FILTER02_OUT	
Ch 1 - X Axis Delay 0 - Max 5.00 Scale Lin -		7: G2:IOP-ADC_FILTER_0_OUTMON 8: G2:IOP-ADC_FILTER_0_OUT16 9: G2:IOP-ADC_FILTER_0_OUTPUT		
Trace Color Jerag 0] Red = Sec 8]	6 14	10: G2:IOP-ADC_FILTER_0_SW1 11: G2:IOP-ADC_FILTER_0_SW2		
Highlight Filter Global		12: G2:IOP-ADC_FILTER_0_RSET 13: G2:IOP-ADC_FILTER_0_SW1R		
Start Stop	:	14: G2:IOP-ADC_FILTER_0_SW2R 15: G2:IOP-ADC_FILTER_0_SW1S 16: G2:IOP-ADC_FILTER_0_SW2S		
Connected to edu-fe1	·	Stop		
CW:0 500.00 Exit 0.00				

Thank you

CDS: from model to module




- Simulink is used just as a graphical editor
- RCG: mdl file \rightarrow C code \rightarrow Kernel module

The CDS_PARTS library

CdsParameters specific to the CDS

- ADC/DAC channels for analog input/output
- Filter with online changeable transfer functions
- Logic elements (switch, add, ...)
- External control with EPICS GUI
- CdsFunctionCall for custom C code
- LIGO-T080135-v4 RCG Application Developer's Guide

In 1 Out

host=edu-fe1 site=G2 rate=64K dcuid=10 gds_nodeid=2 adcSlave=1 specific_cpu=2 shmem_dad=1

Digital vs. analog filters

- Digital: reproducible, no aging, changeable on the fly, system scalable
- Con: limited bandwidth, system complexity
- Cost (10k€+), P[W], your metric