Impedance sensing and control

David Rabeling Nikhef, Amsterdam

AEI sensing and control meeting 14-12-2010

1

Tuesday, 14 December 2010

Overview

- Cavity impedance condition
- Impedance readout
- Experimental demo of IM control
- Applications of IM control
- Impedance control for (Ad)Virgo

Impedance matching of resonant optical systems

AEI sensing and control meeting 14-12-2010

3

Impedance matching of resonant optical systems

- Impedance matching for optically resonant systems is a kin to that in electrical systems:
 - In electrical systems impedance matching provides optimum voltage, power, or current transfer.
 - In optical systems impedance matching provides the optimum electric field transfer.

Impedance matching of resonant optical systems

- Impedance matching for optically resonant systems is a kin to that in electrical systems:
 - In electrical systems impedance matching provides optimum voltage, power, or current transfer.
 - In optical systems impedance matching provides the optimum electric field transfer.
- Interrogation and control of the impedance matching condition offers an alternative active feedback control technique that has applications within GW interferometry, absorption spectroscopy, and quantum optics experiments.

The important parameters that active impedance matching optimises are:

AEI sensing and control meeting 14-12-2010

Tuesday, 14 December 2010

4

The important parameters that active impedance matching optimises are:

• optimum electric field transfer through the optical system.

The important parameters that active impedance matching optimises are:

- optimum electric field transfer through the optical system.
- ensures that the reflected electric field is zero and the circulating field is maximised (assuming a back mirror who's reflectivity is dominated by loss).
- by optimising the circulating power, the technique also optimises the signal sensitivity of the system.

• The impedance condition of a cavity is often described by the reflected cavity electric field.

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

Tuesday, 14 December 2010

Impedance sensing

• By monitoring the beat signal between the carrier and a set of amplitude modulated sidebands which are well outside the coupled cavity linewidth, we can obtain a signal which is proportional to the reflected electric field amplitude:

$$E_{refl} \approx E_{inc} e^{i\omega_c t} \left[\mathcal{R}(\omega_c) + \frac{\beta}{2} \mathcal{R}(\omega_c + \omega_m) e^{i\omega_m t} + \frac{\beta}{2} \mathcal{R}(\omega_c - \omega_m) e^{-i\omega_m t} \right]$$

• Demodulation allows to extract a signal which is linearly dependent on the reflected amplitude response of the coupled cavity.

$$\mathcal{E}_{\mathcal{Q}} = \sqrt{P_c P_s} \times Re[\mathcal{R}(\omega_c)\mathcal{R}^*(\omega_c + \omega_m) + \mathcal{R}^*(\omega_c)\mathcal{R}(\omega_c - \omega_m)].$$

Impedance sensing

• The photo detector signal is:

$$P_{refl} = P_c |\mathcal{R}(\omega_c)|^2 + P_s |\mathcal{R}(\omega_c + \omega_m)|^2 + P_s |\mathcal{R}(\omega_c - \omega_m)|^2 + 2\sqrt{P_c P_s} \times Re[\mathcal{R}(\omega_c)\mathcal{R}^*(\omega_c + \omega_m) + \mathcal{R}^*(\omega_c)\mathcal{R}(\omega_c - \omega_m)]\cos(\omega_m t) + 2\sqrt{P_c P_s} \times Im[\mathcal{R}(\omega_c)\mathcal{R}^*(\omega_c + \omega_m) + \mathcal{R}^*(\omega_c)\mathcal{R}(\omega_c - \omega_m)]\sin(\omega_m t) - 2P_s\cos(2\omega_m t).$$

$$(6.2)$$

• Subsequent demodulation allows to extract a signal which is linearly dependent on the reflected amplitude response of the coupled cavity.

$$\mathcal{E}_{\mathcal{Q}} = \sqrt{P_c P_s} \times Re[\mathcal{R}(\omega_c)\mathcal{R}^*(\omega_c + \omega_m) + \mathcal{R}^*(\omega_c)\mathcal{R}(\omega_c - \omega_m)].$$

Impedance sensing

Tuesday, 14 December 2010

NI

Changing the impedance

- We can use a Michelson as a variable reflectivity mirror.
- Or we can use a Fabry-Perot cavity as a variable reflectivity mirror.

Experimental PD and error signals

Experimental PD and error signals

Tuesday, 14 December 2010

14

Impedance control

AEI sensing and control meeting 14-12-2010

Tuesday, 14 December 2010

Impedance error signal

AEI sensing and control meeting 14-12-2010

Tuesday, 14 December 2010

Impedance control

NI

AEI sensing and control meeting 14-12-2010

Tuesday, 14 December 2010

17

Frequency response data

NI

PDH sensitivity VS impedance

19

Absorption spectroscopy

AEI sensing and control meeting 14-12-2010

Tuesday, 14 December 2010

Metrology for evanescent coupling in micro-ring cavity

