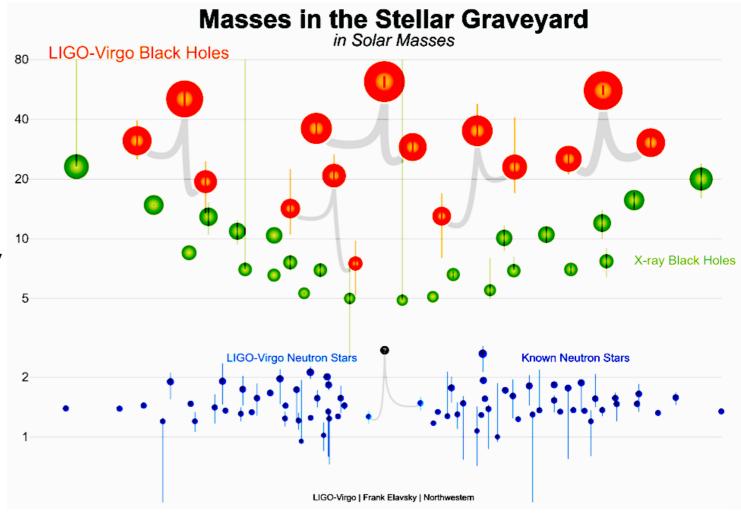
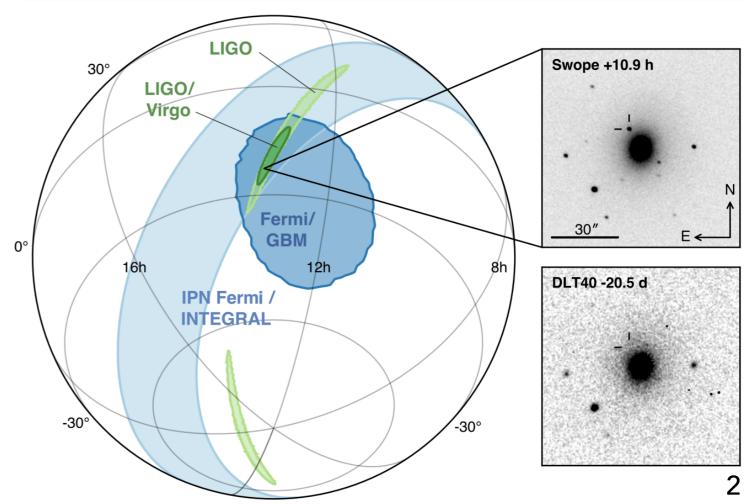

SCIENCE CASE FOR 3G

DEVELOPING A GLOBAL VISION FOR NEXT GENERATION OF GRAVITATIONAL-WAVE DETECTORS

VICKY KALOGERA (NORTHWESTERN)
B.S. SATHYAPRAKASH (PENN STATE AND CARDIFF)


ON BEHALF OF


GWIC 3G COMMITTEE & 3G SCIENCE CASE TEAM (SCT)

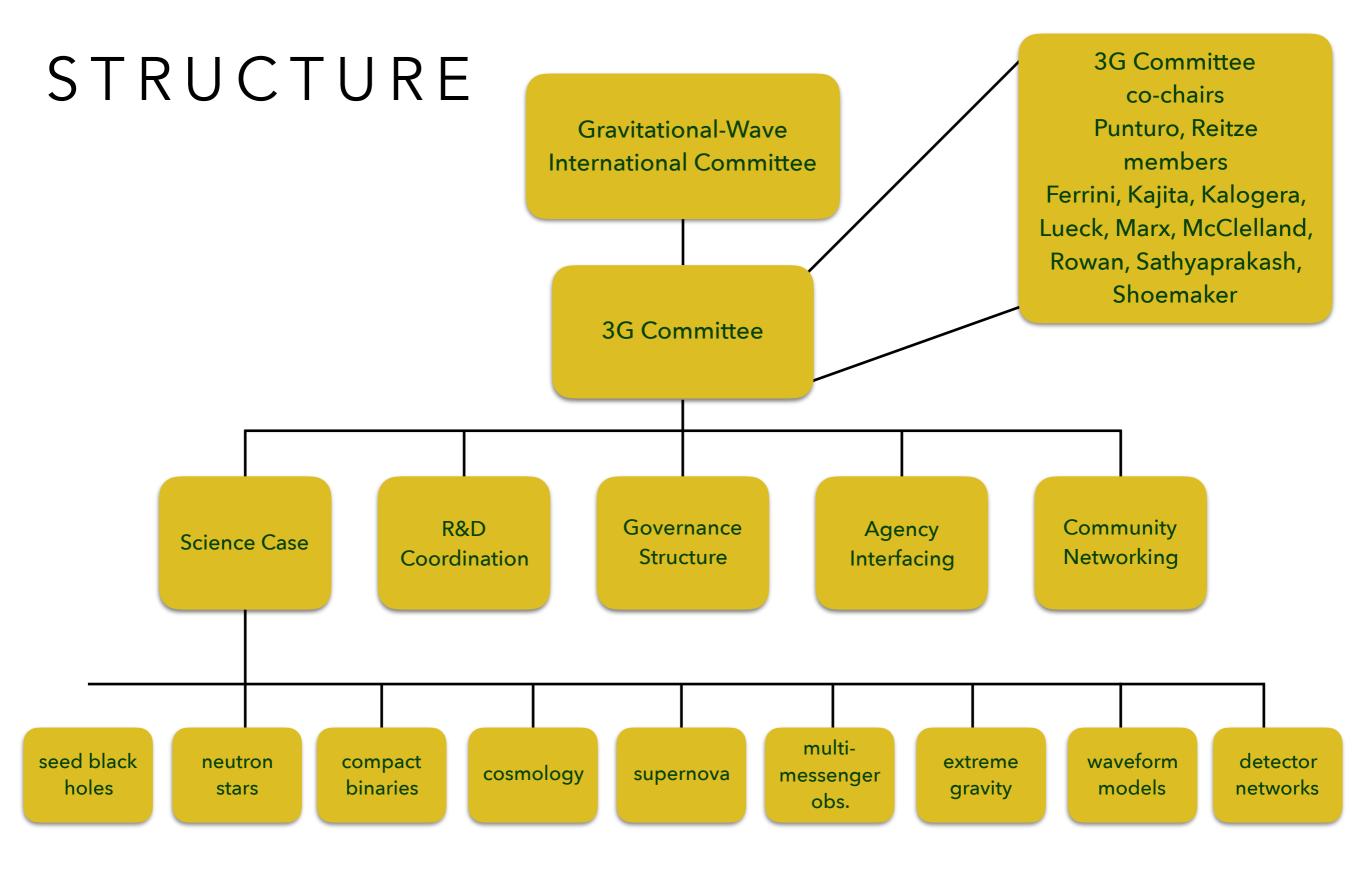
CONTEXT

- gravitational wave observations by LIGO and Virgo have ushered in a new era of scientific discovery
- will advance the exploration of extremes of astrophysics and gravity
- solve open questions in fundamental physics and astronomy
- provide insights into most powerful events in the Universe
- boost the impact of multimessenger astronomy
- likely to reveal new objects and phenomena

WHY 3G, WHY NOW?

- LIGO and Virgo both have facility-imposed limits on sensitivity
 - at most, x 3 improvements in strain sensitivity possible, gravity gradient noise limits sensitivity below 10 Hz
 - there is a compelling case to build detectors that can observe deeper into the cosmos
- LIGO and Virgo took ~ 15 years each for initial and advanced configuration
 - need to act now to have vastly improved sensitivity in ~15 yrs
 - vision to build a facility that's good ~30-40 yrs after construction
 - · need to explore/understand funding scenarios in different regions
- to succeed it is critical to have a common/shared global vision
 - articulate for the excellent science we know is possible from a strong platform

GRAVITATIONAL WAVE AGENCIES CORRESPONDENTS (GWAC)


- an informal grouping of funding agencies, initiated by NSF in 2015
 - communication between funding agencies to coordinate existing and new funding opportunities for GW science
 - will work in direct contact with the scientific community
 - membership open to funding or national government agency
 - no financial commitment is required, just the motivation to start a dialogue
- current membership includes
 - ◆ ARC, CFI, CNRS, CONACYT, DFG, INFN, NASA, NSF, STFC

SCOPE

- to fully exploit the GW window we will need new facilities
- GWIC formed a subcommittee to develop a vision for the next generation of ground-based detectors
- one of the charges to the GWIC subcommittee is:
 - "commission a study of ground-based gravitational wave science from the global scientific community, investigating potential science vs. architecture vs. network configuration vs. cost trade-offs, ..."
 - GWIC subcommittee has constituted five 3G subcommittees:
 - (1) Science Case Team (3G-SCT), (2) R&D Coordination, (3) Governance, (4) Agency Interfacing, (5) Community Networking
- the Science Case will be developed by an international consortium of scientists under the leadership of the 3G-SCT (18 members)

GOALS, TIMELINE

- develop a robust science case unique to GW observations for the next generation of ground-based detectors
 - possibly, help with position papers for national and international studies and surveys
 - ◆ APPEC and ESFRI roadmaps in Europe, US decadal survey, ...
- science case document to be delivered by Dec. 2018
- study will be supported by **nine** working groups
- ~ 150 researchers from around the world have joined the 3G-SCT consortium
 - each WG consists of ~20-40 members
 - WG will have begun bi-weekly TeamSpeak teleconferences

for membership of committees see: https://gwic.ligo.org/3Gsubcomm/

Working Group
Extreme Gravity
Neutron Stars
Compact Binaries
Seed Black Holes
Supernovae
Cosmology
Numerical & Analytical Relativity
Detector Networks
Multi-Messenger Observations

Co-chairs
Buonanno, Van Den Broeck
Papa, Reddy, Rosswog
Bailes, Kalogera, Mandel
Colpi, Fairhurst
Bizouard, Burrows
Mandic, Sathyaprakash
Buonanno, Lehner
Evans, Fairhurst, Hild
Bailes, Kasliwal

SCIENCE CASE: THE BIG PICTURE

- * start with the most compelling science questions in fundamental physics, astrophysics, cosmology, ... relevant to GW observations
 - don't start with sensitivity or network goals or assumptions
 - however, questions shouldn't require unreasonably greater sensitivity than 3G
 - * strain sensitivity a factor 10-30 better than advanced detectors and frequency range from 1 Hz to ~few kHz, are both reasonable
- discuss what infrastructure will be required for answering these questions
 - waveforms, calibration, computational capabilities, analysis techniques, strain sensitivities at specific frequency ranges, detector networks, EM telescopes, LISA, ...

SCIENCE CASE: THE DOCUMENT

- executive summary: ~ four pages with high quality images and text
- science case (part of a bigger document but stand alone in content)
 - · № ~100 pages of text including graphics, tables, illustrations, boxes, ...
 - each WG will have between 8-12 pages
 - might organize chapters differently from WG titles
 - decision on structure in the next ~2-3 months
 - expect significant overlap in science questions among some WGs
 - addressed by coordination within the 3G-SCT and cross WG memberships
- will need videos, animations, brochures, postcards, factsheets and other outreach material
 - helpful in community building, public outreach, advocacy

INFRASTRUCTURE

- * TeamSpeak for teleconferences <u>zam.mit.edu</u>
- gw-astronomy.org for email lists, consortium and WG membership
- git repository for science case document, wiki pages to record meeting minutes, assignments, to-do lists, projects and outcomes, etc. https://github.com/gwic-3g/